Citation: | HOU Xinyi, WU Ling, LI Baoqun, LI Zixiong, DU Lei, WANG Tianshu. Output characteristics of 1 μm all-fiber MOPA structure laser[J]. Journal of Applied Optics, 2023, 44(4): 920-926. DOI: 10.5768/JAO202344.0408002 |
The main oscillation power amplification (MOPA) structure has become one of the mainstream designs of high-power fiber laser due to its good beam quality and adjustable parameters. In order to improve the output performance of high-power ytterbium-doped fiber laser (YDFL) and increase the optical-to-optical conversion efficiency of the system, a MOPA structure all-fiber high-power laser based on 915 nm pump laser and double clad ytterbium-doped fiber (YDF) was reported. The high-power fiber laser was composed of a seed laser pumped by an electrically modulated laser diode (LD) and a ytterbium-doped fiber amplifier (YDFA). In continuous wave (CW) mode, after the laser seed source passing through the YDFA, the laser output with the center wavelength of 1 069.96 nm was realized, and the maximum average output power was up to 945.9 W. The slope efficiency of the MOPA structure laser is as high as 74.12%, which has good robustness. The research scheme has reference significance for the development of high-power MOPA structure fiber laser.
[1] |
ZHANG X J, LI W W, LI J, et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm[J]. Opto-Electronic Advances,2020,3(5):6-15.
|
[2] |
MA W Z, ZHAO D S, LIU R M, et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity[J]. Opto-Electronic Advances,2020,3(11):13-20.
|
[3] |
LEE E, SUN B, LUO J Q, et al. Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels[J]. Opto-Electronic Advances,2020,3(6):13-21.
|
[4] |
洪瑶, 张靓, 纪海莹, 等. 多模光纤作可饱和吸收体的锁模光纤激光器[J]. 光电工程,2021,48(5):36-42.
HONG Yao, ZHANG Jing, JI Haiying, et al. Mode-locked fiber laser with multimode fiber as saturable absorber[J]. Opto-Electronic Engineering,2021,48(5):36-42.
|
[5] |
尧涵, 石帆, 黄译平, 等. 基于模式耦合器的锁模掺镱光纤激光器[J]. 光电工程,2020,47(11):87-92.
YAO Han, SHI Fan, HUANG Yiping, et al. Mode-locked Yb-doped fiber laser based on mode coupler[J]. Opto-Electronic Engineering,2020,47(11):87-92.
|
[6] |
LIAO L, ZHANG F F, HE X L, et al. Confined-doped fiber for effective mode control fabricated by MCVD process[J]. Applied Optics,2018,57(12):3244-3249. doi: 10.1364/AO.57.003244
|
[7] |
PASCHOTTA R, NILSSON J, TROPPER A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics,1997,33(7):1049-1056. doi: 10.1109/3.594865
|
[8] |
JEONG Y, NILSSON J, SAHU J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power[J]. Optics Letters,2005,30(5):459-461. doi: 10.1364/OL.30.000459
|
[9] |
GRAY S, LIU A P, WALTON D T, et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express,2007,15(25):17044. doi: 10.1364/OE.15.017044
|
[10] |
ZAYTSEV A K, WANG C L, LIN C H, et al. Effective pulse recompression after nonlinear spectral broadening in picosecond Yb-doped fiber amplifier[J]. Laser Physics,2012,22(2):447-450. doi: 10.1134/S1054660X12020259
|
[11] |
VALERO N, FERAL C, LHERMITE J, et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters,2020,45(6):1495-1498. doi: 10.1364/OL.380713
|
[12] |
JIANG P P, YANG D Z, WANG Y X, et al. All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W[J]. Laser Physics Letters,2009,6(5):384-387. doi: 10.1002/lapl.200910009
|
[13] |
ZHENG C, ZHANG H T, CHENG W Y, et al. Single mode MOPA structured all-fiber Yb pulse fiber amplifier at low repetition[J]. Laser Physics,2011,21(6):1081-1084. doi: 10.1134/S1054660X11110405
|
[14] |
张伟毅, 宁继平, 陈博, 等. 脉冲泵浦的掺镱光纤放大器中放大自发辐射动态变化模拟[J]. 光子学报,2011,40(5):699-704. doi: 10.3788/gzxb20114005.0699
ZHANG Weiyi, NING Jiping, CHEN Bo, et al. Simulation the ASE dynamics in the pulsed-pumped ytterbium-doped fiber amplifiers[J]. Acta Photonica Sinica,2011,40(5):699-704. doi: 10.3788/gzxb20114005.0699
|
[15] |
石争, 盛泉, 史朝督, 等. 高峰值功率掺Yb3+石英光纤脉冲单频mopa[J/OL]. 光学学报, 2022: 1-13. (2022-07-25). https://kns.cnki.net/kcms/detail/31.1252.O4.20220722.2119.034.html.
SHI Zheng, SHENG Quan, SHI chaodu, et al. High peak power Yb3+-doped quartz fiber pulse single frequency MOPA[J/OL]. Journal of Optics, 2022: 1-13. (2022-07-25). https://kns.cnki.net/kcms/detail/31.1252.O4.20220722.2119.034.html.
|
[16] |
ZHANG J H, YANG C, HUANG C, et al. 10 W CW ytterbium-doped fiber laser with 4 × 1 fused fiber bundle combiner[J]. Frontiers of Optoelectronics in China,2009,2(1):61-63. doi: 10.1007/s12200-008-0039-8
|
[17] |
魏珊珊, 刘元煌, 陈群峰, 等. 面向Rb原子精密测量的边带锁定780 nm高功率激光源[J]. 中国激光,2021,48(7):48-56.
WEI Shanshan, LIU Yuanhuang, CHEN Qunfeng, et al. Sideband-locked high-power 780 nm laser source for precise measurement based on Rb atoms[J]. Chinese Journal of Lasers,2021,48(7):48-56.
|
[18] |
PAL D, SEN R, PAL A. Design of all-fiber thulium laser in CW and QCW mode of operation for medical use[J]. Physica Status Solidi C,2017,14(1/2):1600127.
|
[1] | LI Yan, FAN Jihong, YU Bing, YUAN Lin'guang, SUN Yu'nan, QIN Yan, MA Li. Spectral responsivity measurement technology for UV detector based on cryogenic radiometer[J]. Journal of Applied Optics, 2022, 43(2): 311-316. DOI: 10.5768/JAO202243.0204001 |
[2] | LIN Yongjie, XU Nan, HE Yingwei, LIU Wende, GAN Haiyong, GONG Huaping. Relative spectral responsivity calibration technology of InGaAs photodetector based on super-continuum light source[J]. Journal of Applied Optics, 2021, 42(4): 709-716. DOI: 10.5768/JAO202142.0403003 |
[3] | Zhang Yan-na, Zheng Xiao-bing, Li Xin, Wei Wei, Pang Wei-wei. Calibrating method traced to cryogenic absolute radiometer for solar irradiance spectroradiometer[J]. Journal of Applied Optics, 2015, 36(4): 572-579. DOI: 10.5768/JAO201536.0403003 |
[4] | TAO Kun-yu, LI Fu-wei, FU Sen, ZHOU Yan-ping. Error analysis and comparison of spectral responsivity calibration methods for HgCdTe-IRFPA imaging detector[J]. Journal of Applied Optics, 2007, 28(5): 587-592. |
[5] | WANG Ji, ZHENG Xiao-bing, ZHANG Lei, LIN Zhi-qiang. Measurement of spectral responsivity of an infrared detector[J]. Journal of Applied Optics, 2007, 28(3): 313-316. |
[6] | CHENG Hong-chang, SHENG Liang, SHI Feng, WANG Fen-fen, FENG Liu. Spectral response measurement of UV image intensifier[J]. Journal of Applied Optics, 2007, 28(3): 305-308. |
[7] | FAN Ji-hong, HOU Xi-qi, YANG Zhao-jin, YIN Tao, QIN Yan, LIU Jian-ping. Measurement technology for spectral responsivity of infrared detector[J]. Journal of Applied Optics, 2006, 27(5): 460-462. |
[8] | FAN Ji-hong, YANG Zhao-jin, QIN Yan. Research of test technology for absolute spectral responsivity of HgCdTe detector[J]. Journal of Applied Optics, 2006, 27(supp): 79-82. |
[9] | SHI Ji-fang, HOU Xi-qi, FAN Ji-hong, SUN Yu-nan. Study of spectral responsivity testing technologyfor photocathodes of image intensifiers[J]. Journal of Applied Optics, 2006, 27(supp): 68-70. |
[10] | ZHAN Chun-lian, LI Yan-mei, LIU Jian-ping, LI Zheng-qi. The Unitormity and Linearity of Infrared Spectral Response of Decector[J]. Journal of Applied Optics, 2004, 25(6): 34-37. |
1. |
杜振中. 基于机器视觉的运动误差自动校正系统设计. 现代电子技术. 2019(19): 107-111 .
![]() |