HOU Xinyi, WU Ling, LI Baoqun, LI Zixiong, DU Lei, WANG Tianshu. Output characteristics of 1 μm all-fiber MOPA structure laser[J]. Journal of Applied Optics, 2023, 44(4): 920-926. DOI: 10.5768/JAO202344.0408002
Citation: HOU Xinyi, WU Ling, LI Baoqun, LI Zixiong, DU Lei, WANG Tianshu. Output characteristics of 1 μm all-fiber MOPA structure laser[J]. Journal of Applied Optics, 2023, 44(4): 920-926. DOI: 10.5768/JAO202344.0408002

Output characteristics of 1 μm all-fiber MOPA structure laser

More Information
  • Received Date: November 15, 2022
  • Revised Date: January 08, 2023
  • Available Online: June 09, 2023
  • The main oscillation power amplification (MOPA) structure has become one of the mainstream designs of high-power fiber laser due to its good beam quality and adjustable parameters. In order to improve the output performance of high-power ytterbium-doped fiber laser (YDFL) and increase the optical-to-optical conversion efficiency of the system, a MOPA structure all-fiber high-power laser based on 915 nm pump laser and double clad ytterbium-doped fiber (YDF) was reported. The high-power fiber laser was composed of a seed laser pumped by an electrically modulated laser diode (LD) and a ytterbium-doped fiber amplifier (YDFA). In continuous wave (CW) mode, after the laser seed source passing through the YDFA, the laser output with the center wavelength of 1 069.96 nm was realized, and the maximum average output power was up to 945.9 W. The slope efficiency of the MOPA structure laser is as high as 74.12%, which has good robustness. The research scheme has reference significance for the development of high-power MOPA structure fiber laser.

  • [1]
    ZHANG X J, LI W W, LI J, et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm[J]. Opto-Electronic Advances,2020,3(5):6-15.
    [2]
    MA W Z, ZHAO D S, LIU R M, et al. Observation and optimization of 2 μm mode-locked pulses in all-fiber net anomalous dispersion laser cavity[J]. Opto-Electronic Advances,2020,3(11):13-20.
    [3]
    LEE E, SUN B, LUO J Q, et al. Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels[J]. Opto-Electronic Advances,2020,3(6):13-21.
    [4]
    洪瑶, 张靓, 纪海莹, 等. 多模光纤作可饱和吸收体的锁模光纤激光器[J]. 光电工程,2021,48(5):36-42.

    HONG Yao, ZHANG Jing, JI Haiying, et al. Mode-locked fiber laser with multimode fiber as saturable absorber[J]. Opto-Electronic Engineering,2021,48(5):36-42.
    [5]
    尧涵, 石帆, 黄译平, 等. 基于模式耦合器的锁模掺镱光纤激光器[J]. 光电工程,2020,47(11):87-92.

    YAO Han, SHI Fan, HUANG Yiping, et al. Mode-locked Yb-doped fiber laser based on mode coupler[J]. Opto-Electronic Engineering,2020,47(11):87-92.
    [6]
    LIAO L, ZHANG F F, HE X L, et al. Confined-doped fiber for effective mode control fabricated by MCVD process[J]. Applied Optics,2018,57(12):3244-3249. doi: 10.1364/AO.57.003244
    [7]
    PASCHOTTA R, NILSSON J, TROPPER A C, et al. Ytterbium-doped fiber amplifiers[J]. IEEE Journal of Quantum Electronics,1997,33(7):1049-1056. doi: 10.1109/3.594865
    [8]
    JEONG Y, NILSSON J, SAHU J K, et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power[J]. Optics Letters,2005,30(5):459-461. doi: 10.1364/OL.30.000459
    [9]
    GRAY S, LIU A P, WALTON D T, et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express,2007,15(25):17044. doi: 10.1364/OE.15.017044
    [10]
    ZAYTSEV A K, WANG C L, LIN C H, et al. Effective pulse recompression after nonlinear spectral broadening in picosecond Yb-doped fiber amplifier[J]. Laser Physics,2012,22(2):447-450. doi: 10.1134/S1054660X12020259
    [11]
    VALERO N, FERAL C, LHERMITE J, et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters,2020,45(6):1495-1498. doi: 10.1364/OL.380713
    [12]
    JIANG P P, YANG D Z, WANG Y X, et al. All-fiberized MOPA structured single-mode pulse Yb fiber laser with a linearly polarized output power of 30 W[J]. Laser Physics Letters,2009,6(5):384-387. doi: 10.1002/lapl.200910009
    [13]
    ZHENG C, ZHANG H T, CHENG W Y, et al. Single mode MOPA structured all-fiber Yb pulse fiber amplifier at low repetition[J]. Laser Physics,2011,21(6):1081-1084. doi: 10.1134/S1054660X11110405
    [14]
    张伟毅, 宁继平, 陈博, 等. 脉冲泵浦的掺镱光纤放大器中放大自发辐射动态变化模拟[J]. 光子学报,2011,40(5):699-704. doi: 10.3788/gzxb20114005.0699

    ZHANG Weiyi, NING Jiping, CHEN Bo, et al. Simulation the ASE dynamics in the pulsed-pumped ytterbium-doped fiber amplifiers[J]. Acta Photonica Sinica,2011,40(5):699-704. doi: 10.3788/gzxb20114005.0699
    [15]
    石争, 盛泉, 史朝督, 等. 高峰值功率掺Yb3+石英光纤脉冲单频mopa[J/OL]. 光学学报, 2022: 1-13. (2022-07-25). https://kns.cnki.net/kcms/detail/31.1252.O4.20220722.2119.034.html.

    SHI Zheng, SHENG Quan, SHI chaodu, et al. High peak power Yb3+-doped quartz fiber pulse single frequency MOPA[J/OL]. Journal of Optics, 2022: 1-13. (2022-07-25). https://kns.cnki.net/kcms/detail/31.1252.O4.20220722.2119.034.html.
    [16]
    ZHANG J H, YANG C, HUANG C, et al. 10 W CW ytterbium-doped fiber laser with 4 × 1 fused fiber bundle combiner[J]. Frontiers of Optoelectronics in China,2009,2(1):61-63. doi: 10.1007/s12200-008-0039-8
    [17]
    魏珊珊, 刘元煌, 陈群峰, 等. 面向Rb原子精密测量的边带锁定780 nm高功率激光源[J]. 中国激光,2021,48(7):48-56.

    WEI Shanshan, LIU Yuanhuang, CHEN Qunfeng, et al. Sideband-locked high-power 780 nm laser source for precise measurement based on Rb atoms[J]. Chinese Journal of Lasers,2021,48(7):48-56.
    [18]
    PAL D, SEN R, PAL A. Design of all-fiber thulium laser in CW and QCW mode of operation for medical use[J]. Physica Status Solidi C,2017,14(1/2):1600127.
  • Related Articles

    [1]LI Yan, FAN Jihong, YU Bing, YUAN Lin'guang, SUN Yu'nan, QIN Yan, MA Li. Spectral responsivity measurement technology for UV detector based on cryogenic radiometer[J]. Journal of Applied Optics, 2022, 43(2): 311-316. DOI: 10.5768/JAO202243.0204001
    [2]LIN Yongjie, XU Nan, HE Yingwei, LIU Wende, GAN Haiyong, GONG Huaping. Relative spectral responsivity calibration technology of InGaAs photodetector based on super-continuum light source[J]. Journal of Applied Optics, 2021, 42(4): 709-716. DOI: 10.5768/JAO202142.0403003
    [3]Zhang Yan-na, Zheng Xiao-bing, Li Xin, Wei Wei, Pang Wei-wei. Calibrating method traced to cryogenic absolute radiometer for solar irradiance spectroradiometer[J]. Journal of Applied Optics, 2015, 36(4): 572-579. DOI: 10.5768/JAO201536.0403003
    [4]TAO Kun-yu, LI Fu-wei, FU Sen, ZHOU Yan-ping. Error analysis and comparison of spectral responsivity calibration methods for HgCdTe-IRFPA imaging detector[J]. Journal of Applied Optics, 2007, 28(5): 587-592.
    [5]WANG Ji, ZHENG Xiao-bing, ZHANG Lei, LIN Zhi-qiang. Measurement of spectral responsivity of an infrared detector[J]. Journal of Applied Optics, 2007, 28(3): 313-316.
    [6]CHENG Hong-chang, SHENG Liang, SHI Feng, WANG Fen-fen, FENG Liu. Spectral response measurement of UV image intensifier[J]. Journal of Applied Optics, 2007, 28(3): 305-308.
    [7]FAN Ji-hong, HOU Xi-qi, YANG Zhao-jin, YIN Tao, QIN Yan, LIU Jian-ping. Measurement technology for spectral responsivity of infrared detector[J]. Journal of Applied Optics, 2006, 27(5): 460-462.
    [8]FAN Ji-hong, YANG Zhao-jin, QIN Yan. Research of test technology for absolute spectral responsivity of HgCdTe detector[J]. Journal of Applied Optics, 2006, 27(supp): 79-82.
    [9]SHI Ji-fang, HOU Xi-qi, FAN Ji-hong, SUN Yu-nan. Study of spectral responsivity testing technologyfor photocathodes of image intensifiers[J]. Journal of Applied Optics, 2006, 27(supp): 68-70.
    [10]ZHAN Chun-lian, LI Yan-mei, LIU Jian-ping, LI Zheng-qi. The Unitormity and Linearity of Infrared Spectral Response of Decector[J]. Journal of Applied Optics, 2004, 25(6): 34-37.
  • Cited by

    Periodical cited type(1)

    1. 杜振中. 基于机器视觉的运动误差自动校正系统设计. 现代电子技术. 2019(19): 107-111 .

    Other cited types(0)

Catalog

    Article views (277) PDF downloads (80) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return