WANG Ji, ZHENG Xiao-bing, ZHANG Lei, LIN Zhi-qiang. Measurement of spectral responsivity of an infrared detector[J]. Journal of Applied Optics, 2007, 28(3): 313-316.
Citation: WANG Ji, ZHENG Xiao-bing, ZHANG Lei, LIN Zhi-qiang. Measurement of spectral responsivity of an infrared detector[J]. Journal of Applied Optics, 2007, 28(3): 313-316.

Measurement of spectral responsivity of an infrared detector

More Information
  • Corresponding author:

    WANG Ji

  • The calibration technology for absolute spectral responsivity of the nearinfrared radiation power is investigated. An extended infrared-InGaAs (EIRIGA) photodiode was designed. The spectral responsivity of the EIR-IGA detector was measured to allow it to be a standard power-transfer detector working in the wavelength range of 1.2μm~2.5μm. This near-infrared detector was also calibrated by cryogenic radiometers before. The absolute responsivity of the EIR-IGA detector was calibrated in 1260nm, and the continuous relative spectral responsivity was measured with a new IR SCF system based on IR monochromator. The absolute spectral responsivity of the detector is obtained at last with the two steps.
  • Related Articles

    [1]YANG Xiaoyang, SHEN Manling, WANG Dahui, YANG Pengling, LI Xiangyang. Mid-infrared trap detector technology based on cryogenic integrating sphere[J]. Journal of Applied Optics, 2024, 45(4): 685-692. DOI: 10.5768/JAO202445.0401003
    [2]YE Wei, DU Pengfei, XIAO Sheng, LI Mengfei. Influence of InAlAs concentration on In0.83Al0.17As/In0.83Ga0.17As infrared detector characteristics[J]. Journal of Applied Optics, 2022, 43(2): 317-324. DOI: 10.5768/JAO202243.0204002
    [3]LI Yan, FAN Jihong, YU Bing, YUAN Lin'guang, SUN Yu'nan, QIN Yan, MA Li. Spectral responsivity measurement technology for UV detector based on cryogenic radiometer[J]. Journal of Applied Optics, 2022, 43(2): 311-316. DOI: 10.5768/JAO202243.0204001
    [4]Li Xue, Fang Bo, Deng Yuqiang, Li Jianmin, Qi Cenke, Cai Jinhui. High-precision responsivity calibration system for terahertz detector[J]. Journal of Applied Optics, 2018, 39(5): 691-696. DOI: 10.5768/JAO201839.0503003
    [5]JIAO Ming-yin. Optical design of searching system using 480×6 LWIR detector[J]. Journal of Applied Optics, 2012, 33(6): 1011-1013.
    [6]ZHANG Yang, ZHAG Ji-long, DU Xuan-yan. Weak signal detection circuit based on HgCdTe IR detector[J]. Journal of Applied Optics, 2011, 32(4): 779-783.
    [7]HUANG Chang-zhao, ZHANG Shu-qun, YAO Li-jun, DING Jia, HUANG Yong. ADesign of data acquisition system for near infrared detector[J]. Journal of Applied Optics, 2011, 32(1): 138-143.
    [8]TAO Kun-yu, LI Fu-wei, FU Sen, ZHOU Yan-ping. Error analysis and comparison of spectral responsivity calibration methods for HgCdTe-IRFPA imaging detector[J]. Journal of Applied Optics, 2007, 28(5): 587-592.
    [9]FAN Ji-hong, HOU Xi-qi, YANG Zhao-jin, YIN Tao, QIN Yan, LIU Jian-ping. Measurement technology for spectral responsivity of infrared detector[J]. Journal of Applied Optics, 2006, 27(5): 460-462.
    [10]FAN Ji-hong, YANG Zhao-jin, QIN Yan. Research of test technology for absolute spectral responsivity of HgCdTe detector[J]. Journal of Applied Optics, 2006, 27(supp): 79-82.

Catalog

    Article views (3153) PDF downloads (1360) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return