HU Chaolong, LIU Lei, QIAN Yunsheng, MO Yongchao, BAI Xiaofeng, SHI Feng. Evaluation factor for photocathode detection in low-level-light night vision system[J]. Journal of Applied Optics, 2023, 44(3): 628-635. DOI: 10.5768/JAO202344.0304001
Citation: HU Chaolong, LIU Lei, QIAN Yunsheng, MO Yongchao, BAI Xiaofeng, SHI Feng. Evaluation factor for photocathode detection in low-level-light night vision system[J]. Journal of Applied Optics, 2023, 44(3): 628-635. DOI: 10.5768/JAO202344.0304001

Evaluation factor for photocathode detection in low-level-light night vision system

More Information
  • Received Date: October 31, 2022
  • Revised Date: November 28, 2022
  • Available Online: March 16, 2023
  • Spectral matching factor is an important parameter for the performance evaluation of the low-light-level (LLL) night vision system. However, the traditional spectral matching factor can only reflect the degree of coincidence between the spectrum of the photocathode and the target in the response wavelength range, and cannot distinguish the performance of different generations of photocathode in LLL night vision system. Therefore, an evaluation factor equation was established to describe the effect of the photocathode on the detected scene, combined with the initial contrast, the integrated sensitivity and the spectral conversion coefficient. Meanwhile, the initial contrast formula of the target and the background was improved to increase the accuracy of the initial contrast. The spectral matching factors and the proposed evaluation factors of a super-second generation photocathode material and a third generation photocathode material which named New S25 and GaAs with different targets were calculated. The spectral matching factor between New S25 and the target was greater than that between GaAs and the target, which proved the limitation of the spectral matching factor. The evaluation factor between GaAs and the target was greater than that between New S25 and the target, which proved that the proposed evaluation factor could evaluate the performance of LLL night vision system more effectively.

  • [1]
    程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学,2021,42(6):1092-1101. doi: 10.5768/JAO202142.0604001

    CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics,2021,42(6):1092-1101. doi: 10.5768/JAO202142.0604001
    [2]
    ROSE A. The sensitivity performance of the human eye on an absolute scale[J]. Journal of the Optical Society of America,1948,38(2):196-208. doi: 10.1364/JOSA.38.000196
    [3]
    RICHARD J C, LAMPORT D L, ROAUX E, et al. Performances des system, de vision nocturne passive utilisant des tubes intensificateurs d’images influence de la response spectrale de la photo-cathode[J]. Acta Electron,1977,20(4):353-368.
    [4]
    GIAKOUMAKIS G E. Matching factors for various light-source—Photodetector combinations[J]. Applied Physics A,1991,52(1):7-9. doi: 10.1007/BF00323677
    [5]
    张灿林, 陈钱. 背照明电子倍增CCD与景物反射光谱匹配系数的研究[J]. 应用光学,2008,29(2):166-169. doi: 10.3969/j.issn.1002-2082.2008.02.002

    ZHANG Canlin, CHEN Qian. Matching coefficients for BV-EMCCD and reflective radiation spectra of objects[J]. Journal of Applied Optics,2008,29(2):166-169. doi: 10.3969/j.issn.1002-2082.2008.02.002
    [6]
    刘乾坤. 微光夜视成像系统探测阈值评估理论及仿真[D]. 南京: 南京理工大学, 2018.

    LIU Qiankun. Evaluation theory and simulation of detection threshold of low-light-level night vision imaging system[D]. Nanjing: Nanjing University of Science and Technology, 2018.
    [7]
    张琴, 拜晓锋, 程宏昌, 等. 基于夜天光光谱匹配的微光像增强器信噪比研究[J]. 光子学报,2022,51(3):173-181.

    ZHANG Qin, BAI Xiaofeng, CHENG Hongchang, et al. Research on signal-to-noise ratio of low-light level image intensifier based on night sky light spectrum matching[J]. Acta Photonica Sinica,2022,51(3):173-181.
    [8]
    LIU Q K, LIU L, DENG Y B, et al. Apparent distance theory revision for low-light-level night vision system based on noise factor[J]. Optical and Quantum Electronics,2017,49(7):249. doi: 10.1007/s11082-017-1087-3
    [9]
    张俊举, 杨文彬, 许辉, 等. 人体目标光谱特性对微光像增强器视距的影响[J]. 光谱学与光谱分析,2013,33(11):3066-3070. doi: 10.3964/j.issn.1000-0593(2013)11-3066-05

    ZHANG Junju, YANG Wenbin, XU Hui, et al. Influence of human body target’s spectral characteristics on visual range of low light level image intensifiers[J]. Spectroscopy and Spectral Analysis,2013,33(11):3066-3070. doi: 10.3964/j.issn.1000-0593(2013)11-3066-05
    [10]
    杜玉杰, 杜晓晴, 常本康. 国外GaAs光电阴极光谱响应特性比较与分析[J]. 红外技术,2005,27(3):254-256. doi: 10.3969/j.issn.1001-8891.2005.03.017

    DU Yujie, DU Xiaoqing, CHANG Benkang. Compare and analysis of spectral response characteristics of foreign GaAs photocathodes[J]. Infrared Technology,2005,27(3):254-256. doi: 10.3969/j.issn.1001-8891.2005.03.017
    [11]
    李晓峰, 张正君, 丛晓庆, 等. 微通道板结构参数对噪声因子的影响[J]. 光子学报,2021,50(4):143-150. doi: 10.3788/gzxb20215004.0404002

    LI Xiaofeng, ZHANG Zhengjun, CONG Xiaoqing, et al. Influence of microchannel plate structure parameters on noise factor[J]. Acta Photonica Sinica,2021,50(4):143-150. doi: 10.3788/gzxb20215004.0404002
    [12]
    尹丽菊, 陈钱, 张灿林. 雪崩光电二极管的光谱响应特性[J]. 激光与光电子学进展,2010,47(11):37-41.

    YIN Liju, CHEN Qian, ZHANG Canlin. Spectral response characterization of avalanche photodiode[J]. Laser & Optoelectronics Progress,2010,47(11):37-41.
    [13]
    周立伟. 目标探测与识别[M]. 北京: 北京理工大学出版社, 2004: 65-66.

    ZHOU Liwei. Target detection and identification[M]. Beijing: Beijing Insititute of Technology Press, 2004: 65-66.
    [14]
    刘磊, 李元, 钱芸生, 等. 用于微光夜视系统性能评估的新方法[J]. 应用光学,2006,27(6):546-551. doi: 10.3969/j.issn.1002-2082.2006.06.018

    LIU Lei, LI Yuan, QIAN Yunsheng, et al. New method for visual range evaluation and scene simulation of low-light-level(LLL) night vision systems[J]. Journal of Applied Optics,2006,27(6):546-551. doi: 10.3969/j.issn.1002-2082.2006.06.018
    [15]
    刘磊. 激光助视/微光夜视系统视距评估研究[D]. 南京: 南京理工大学, 2005.

    LIU Lei. Visual range evaluation of LLL night vision system with laser illuminator[D]. Nanjing: Nanjing University of Science and Technology, 2005.
    [16]
    金伟其, 张琴, 王霞, 等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报,2020,49(4):61-70.

    JIN Weiqi, ZHANG Qin, WANG Xia, et al. An improved apparent distance model for direct-viewlow-light-level night vision system[J]. Acta Photonica Sinica,2020,49(4):61-70.
  • Related Articles

    [1]DUAN Chenxi, NI Jinping, LI Jing, CHEN Rui, CUI Changqing, LIU Yang. Spatial distribution of sensitivity of large-area triangular detection light screen[J]. Journal of Applied Optics, 2021, 42(6): 956-962. DOI: 10.5768/JAO202142.0601002
    [2]BAI Xiaofeng, CHENG Hongchang, HE Kaiyuan, HAN Kun, YANG Shuning, LI Junguo, CHEN Xulang, DANG Xiaogang, WANG Lei. Single test error analysis for integral sensitivity of low-light-level image intensifier[J]. Journal of Applied Optics, 2020, 41(4): 791-795. DOI: 10.5768/JAO202041.0404001
    [3]WANG Shengyun, XIE Qi, SHI Jifang, SUN Yunan, YU Bing, KANG Dengkui. Measurement system of radiation sensitivity for UV image intensifier[J]. Journal of Applied Optics, 2020, 41(3): 548-552. DOI: 10.5768/JAO202041.0303001
    [4]Bai Fuzhong, Zhang Xiaoyan, Liu Zhen, Gao Xiaojuan, Wang Ying. Effect of working angle on system sensitivity in laser triangulation[J]. Journal of Applied Optics, 2017, 38(5): 826-830. DOI: 10.5768/JAO201738.0507001
    [5]Chen Hong, Du Xiao-qing, Tong Guang, Zhong Cun-peng, Ren Lin-jiao, Lei Xiao-hua, Chen Wei-min. Performance comparison between full-integrating sphere and semi-integrating sphere under optical fiber detection manner[J]. Journal of Applied Optics, 2016, 37(1): 152-156. DOI: 10.5768/JAO201637.0108001
    [6]GAO Jiao-bo, ZHANG Fang, LI Yu. Minimum resolvable contrast model for direct view LLL night vision system[J]. Journal of Applied Optics, 2013, 34(4): 672-675.
    [7]NI Jin-ping, ZHAO Jing-yuan, GAO Fen, LIU Lu. Sensitivity analysis of arc light lens-style light screen[J]. Journal of Applied Optics, 2013, 34(2): 295-299.
    [8]HUANG Shui-hua, ZHOU Quan, TAN Ji-chun. Sensitivity analysis of ellipsometric parameters in ellipsometric spectral measurement[J]. Journal of Applied Optics, 2009, 30(1): 84-88.
    [9]XIANG Shi-ming. Theoretical limit for photocathode sensitivityof image intensifier[J]. Journal of Applied Optics, 2008, 29(1): 48-51.
    [10]XIE Jian-feng, ZHANG Fu-wen. The Research on the Sensitivity Improvement of Electric Field Sensor without Electrode[J]. Journal of Applied Optics, 2004, 25(3): 60-64.
  • Cited by

    Periodical cited type(7)

    1. 江巨浪,刘国明,朱柱,黄忠,郑江云. 基于快速模糊聚类的动态多直方图均衡化算法. 电子学报. 2022(01): 167-176 .
    2. 闫哲,蒋砾,杨帆,罗志斌,贾赞,张巍,朱洪洋,陈如造,朱光明,郭小军,刘孟然. 基于双直方图均衡算法的红外图像增强. 红外技术. 2022(09): 944-950 .
    3. 韩少刚,江巨浪. 基于图像分割的双直方图均衡算法. 安庆师范大学学报(自然科学版). 2021(01): 66-69 .
    4. 范华春,张雅琼,纪超,陈光辉,张璋,凌靖,张金辉,卢国俊,周磊,高美. 车载综合观瞄系统的设计与实现. 应用光学. 2021(03): 383-391 . 本站查看
    5. 李德兵. 三维立体动画增强图像处理效果仿真研究. 计算机仿真. 2018(01): 201-205 .
    6. 黄鑫,肖世德,宋波. 监控视频中的车辆异常行为检测. 计算机系统应用. 2018(02): 125-131 .
    7. 张慧,梁银双. 多媒体监控视频图像显示真实性优化仿真. 计算机仿真. 2018(09): 199-202+257 .

    Other cited types(7)

Catalog

    Article views (248) PDF downloads (57) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return