FAN Huachun, ZHANG Yaqiong, JI Chao, CHEN Guanghui, ZHANG Zhang, LING Jing, ZHANG Jinhui, LU Guojun, ZHOU Lei, GAO Mei. Design and implementation of vehicle-borne integrated sighting system[J]. Journal of Applied Optics, 2021, 42(3): 383-391. DOI: 10.5768/JAO202142.0301002
Citation: FAN Huachun, ZHANG Yaqiong, JI Chao, CHEN Guanghui, ZHANG Zhang, LING Jing, ZHANG Jinhui, LU Guojun, ZHOU Lei, GAO Mei. Design and implementation of vehicle-borne integrated sighting system[J]. Journal of Applied Optics, 2021, 42(3): 383-391. DOI: 10.5768/JAO202142.0301002

Design and implementation of vehicle-borne integrated sighting system

More Information
  • Received Date: September 07, 2020
  • Revised Date: December 03, 2020
  • Available Online: April 04, 2021
  • Modern war requires that the battlefield target search equipment can quickly and automatically search, discover and identify the long-distance targets under the condition of mobility, and sorts the threat of enemy targets, then accurately locates the coordinates of the targets, and transmits the target information to the rear. A new type of sighting system for armor vehicles was proposed. The five modules of the system, panoramic module, visible continuous zoom module, high-performance infrared thermal imager module, intelligent control module and pan tilt zoom (PTZ) optical mechanical module were studied and designed. In addition, the composition, principles and key technologies of the system were discussed. The results of functional test and precision test after prototype development show that the integrated sighting system has correct principle, high reliability, stable accuracy as high as 0.06 mil (1σ), and strong rapid response ability, which provides a cost-effective way to realize the anti-terrorism of armor vehicles.
  • [1]
    陈超帅. 红外面阵搜索系统快速扫描成像像移补偿技术研究与实现[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018.

    CHENG Chaoshuai. Research and implementation of image motion compensation technology for fast scanning imaging of infrared array search system[D]. Shanghai: University of Chinese Academy of Sciences, 2018.
    [2]
    范华春, 杨红江, 苏波. 坦克装甲车辆升降式周视稳定观瞄镜的设计与实现[J]. 车辆与动力技术,2006,9(3):42-46. doi: 10.3969/j.issn.1009-4687.2006.03.011

    FAN Huachun, YANG Hongjiang, SU Bo. The design and realization of the panoramic stabilized and elevated sight in tank and armored vehicles[J]. Vehicle & Power Technology,2006,9(3):42-46. doi: 10.3969/j.issn.1009-4687.2006.03.011
    [3]
    张翼. 基于图像技术的运动目标位置解算研究[D]. 南京: 南京航空航天大学, 2013.

    ZHANG Yi. Research on moving target position calculation based on image technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    [4]
    章毓晋. 图像工程[M]. 北京: 清华大学出版社, 2000: 15-17.

    ZHANG Yujin. Image engineering[M]. Beijing: Tsinghua University Press, 2000: 15-17.
    [5]
    ZHANG Ling, XU Qing. Single view head pose estimation system based on SoC FPGA[C]. Beijing: IEEE Beijing Section, 2017: 976-981.
    [6]
    丛爽, 邓科 尚伟伟, 等. 陀螺稳定平台建模分析[J]. 科技导报,2011,29(9):42-47. doi: 10.3981/j.issn.1000-7857.2011.09.006

    CONG Shuang, DENG Ke, SHANG Weiwei, et al. Modeling and analysis of gyro stabilized platform[J]. Science and Technology Guide,2011,29(9):42-47. doi: 10.3981/j.issn.1000-7857.2011.09.006
    [7]
    刘义, 吴彦林, 蒿俊晓. 光纤陀螺在车载惯性平台稳定回路中的仿真[J]. 指挥控制与仿真,2016,38(6):93-95. doi: 10.3969/j.issn.1673-3819.2016.06.019

    LIU Yi, WU Yanlin, GAO Junxiao. Simulation of FOG in stabilization loop of vehicle inertial platform[J]. Command Control & Simulation,2016,38(6):93-95. doi: 10.3969/j.issn.1673-3819.2016.06.019
    [8]
    QIAN Qishu, HU Yihua, ZHAO Nanxiang et al. Summed volume region selection based three-dimensional automatic target recognition for airborne LIDAR[J]. Defence Technology,2020,16(3):535-542. doi: 10.1016/j.dt.2019.10.011
    [9]
    梁杰, 李磊, 任君, 等. 基于深度学习的红外图像遮挡干扰检测方法[J]. 兵工学报,2019,40(7):1401-1410. doi: 10.3969/j.issn.1000-1093.2019.07.009

    LIANG Jie, LI Lei, REN Jun, et al. Infrared image occlusion detection method based on deep learning[J]. Acta Armamentarii,2019,40(7):1401-1410. doi: 10.3969/j.issn.1000-1093.2019.07.009
    [10]
    北京芯景源科技有限公司. 多目标检测方案说明[R]. 北京: 北京芯景源科技有限公司, 2019.

    Beijing Xinjingyuan Technology Co. Multi target detection scheme description[R]. Beijing: Beijing Xinjingyuan Technology Co., 2019.
    [11]
    吴迪, 朱青松. 图像去雾的最新研究进展[J]. 自动化学报,2015,41(2):221-239.

    WU Di, ZHU Qingsong. The latest research progress of image defogging[J]. Journal of Automation,2015,41(2):221-239.
    [12]
    向友君, 郭宝龙. 运动估计快速块匹配算法[J]. 计算机工程,2003,29(13):62-64. doi: 10.3969/j.issn.1000-3428.2003.13.024

    XIANG Youjun, GUO Baolong. Fast block matching algorithm for motion estimation[J]. Computer Engineering,2003,29(13):62-64. doi: 10.3969/j.issn.1000-3428.2003.13.024
    [13]
    陈天华, 王福龙. 实时鲁棒的特征点匹配算法[J]. 中国图象图形学报,2016,21(9):1213-1220. doi: 10.11834/jig.20160910

    CHEN Tianhua, WANG Fulong. Real time robust feature point matching algorithm[J]. Chinese Journal of Image Graphics,2016,21(9):1213-1220. doi: 10.11834/jig.20160910
    [14]
    HU Min. Application of an improved Otsu algorithm in image segmentation[J]. Journal of Electronic Measurement and Instrument,2010,24(5):443-449.
    [15]
    张霖泽, 王晶琦, 吴文. 一种基于K-means改进聚类的图像增强算法[J]. 应用光学,2016,37(4):549-554. doi: 10.5768/JAO201637.0402003

    ZHANG Linze, WANG Jinqi, WU Wei. An image enhancement algorithm based on improved K-means clustering[J]. Journal of Applied Optics,2016,37(4):549-554. doi: 10.5768/JAO201637.0402003
  • Related Articles

    [1]JI Ting, LIU Yu, WANG Yawei, LI Lei, LI Sizhong, CHEN Jing, WANG Benguo. Quantitative study on influence of elastic moment on stabilization accuracy of electro-optical platform[J]. Journal of Applied Optics, 2022, 43(4): 648-653. DOI: 10.5768/JAO202243.0401009
    [2]QI Yuan, WANG Huilin, HUANG Weidong, CAO Yinqi, MAI Yuying, ZHANG Xiangming. Vibration reduction technology of airborne photoelectric stabilized sighting platform[J]. Journal of Applied Optics, 2022, 43(4): 611-617. DOI: 10.5768/JAO202243.0401004
    [3]ZHANG Yaqiong, GUO Jiandu, XU Yang, HAO Xiaojian, CHEN Guanghui, ZHOU Jing, ZHU Jingjing. High-precision stability control of scanning platform of fast circumferential scanning detection system[J]. Journal of Applied Optics, 2022, 43(3): 375-385. DOI: 10.5768/JAO202243.0301001
    [4]WANG Xinwei, WANG Huilin, HAN Rui, DU Yanlu, GONG Quancheng, REN Yuanbin, LI Tao. Passing zenith stabilization method of two-dimensional gyro platform based on disturbance sources classification control[J]. Journal of Applied Optics, 2021, 42(6): 989-996. DOI: 10.5768/JAO202142.0601007
    [5]Tan Songnian, Li Quanchao, Zhang Hongwei, Li Lei. Design and analysis of azimuth-gimbal in aerial opto-electronic stabilized platform[J]. Journal of Applied Optics, 2016, 37(3): 327-331. DOI: 10.5768/JAO201637.0301001
    [6]Xue Yuanyuan, Chen Wenjian, Kang Tingting, Chen Ying, Zhang Xiajiang, Yang Yuancheng. Inertial compensation method for LOS drift of gyroscope stabilization platform[J]. Journal of Applied Optics, 2016, 37(2): 177-182. DOI: 10.5768/JAO201637.0201005
    [7]Li Hong-guang, Ji Ming, Wu Yu-jing, Guo Xin-sheng, Peng Xia. Stabilization technology for two-axis two-framework platform with big pitching angle[J]. Journal of Applied Optics, 2015, 36(6): 823-828. DOI: 10.5768/JAO201536.0601001
    [8]LI Hong-guang, HAN Wei, SONG Ya-min, TAN Ming-dong, GUO Xin-sheng, LEI Hai-li. Active disturbance rejection servo system forvehicle photoelectric stabilization and tracking platform[J]. Journal of Applied Optics, 2012, 33(6): 1024-1029.
    [9]XU Fei-fei, JI Ming, XIE Jing, NIU Jing, GAO Yu, XU Qing-qing. Application of FSM in high accuracy line-of-sight stabilization system[J]. Journal of Applied Optics, 2012, 33(1): 9-13.
    [10]LI Hong-guang, YU Yun-qi, SONG Ya-min. Application of optimal control for stabilization loop of vehicle inertial platform[J]. Journal of Applied Optics, 2007, 28(3): 251-256.

Catalog

    Article views (1387) PDF downloads (208) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return