Li Mingxing, Xiao Xiangguo, Kang Wenli. Measurement method of response matrix for adaptiveoptics systems based on turbulence model[J]. Journal of Applied Optics, 2017, 38(6): 963-967. DOI: 10.5768/JAO201738.0603004
Citation: Li Mingxing, Xiao Xiangguo, Kang Wenli. Measurement method of response matrix for adaptiveoptics systems based on turbulence model[J]. Journal of Applied Optics, 2017, 38(6): 963-967. DOI: 10.5768/JAO201738.0603004

Measurement method of response matrix for adaptiveoptics systems based on turbulence model

More Information
  • Received Date: July 05, 2017
  • Revised Date: August 21, 2017
  • In order to improve the correction accuracy of liquid crystal (LC) adaptive optical systems, a method based on turbulence model for measuring the interaction matrix (IM) was proposed. The wavefronts applied to the LC corrector are the linear combination of Karhunen-Loeve modes which are used to fit the measured aberrations and the coefficients of these modes obey the Kolmogorov atmospheric turbulence model. Comparing with traditional single mode and multiple modes method, the new method has a stronger anti-noise ability and can produce a significant improvement on IM measurement. Under the condition of the signal-to-noise ratio (SNR) of 10, when the repetition rate is 1, 5 and 10, respectively, the corresponding Strehl ratio is 0.06, 0.02, 0.49 and 0.23, 0.40, 0.67, corrected by using the IM obtained with the tradional single mode method and multi-mode method, respectivily, while that of the new method can reach 0.34, 0.56, 0.68.
  • [1]
    周仁忠, 阎吉祥.自适应光学理论[M].北京:北京理工大学出版社, 1996.

    Zhou Renzhong, Yan Jixiang. Adaptive optics theory[M]. Beijing: Beijing Institute of Technology Press, 1996.
    [2]
    陈力子, 景春元, 谭碧桃, 等. 600 mm自适应望远镜最佳子孔径数仿真研究[J].应用光学, 2009, 30(1):25-28. doi: 10.3969/j.issn.1002-2082.2009.01.007

    Chen Lizi, Jing Chunyuan, Tan Bitao, et al. Optimum subapertures of 600 mm adaptive optical telescope[J]. Journal of Applied Optics.2009, 30(1):0025-04. doi: 10.3969/j.issn.1002-2082.2009.01.007
    [3]
    姜文汉, 张雨东, 饶长辉, 等.中国科学院光电技术研究所的自适应光学研究进展[J].光学学报, 2011, 31(9):0900106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201109006

    Jiang Wenhan, Zhang Yudong, Rao Changhui, et al. Progress on adaptive optics of institute of optics and electronic, chinese academy of sciences[J]. Acta Optica Sinica.2011, 31(9):0900106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201109006
    [4]
    Kasper M, Fedrigo E, Looze D P, et al. Fast calibration of high-order adaptive optics systems[J]. Journal of the Optical Society of America Optics Image Science and Vision, 2004, 21(6):1004-1008. doi: 10.1364/JOSAA.21.001004
    [5]
    Guo Youming, Rao Changhui, Bao Hua, et al. Multichannel-hadamard calibration of high-order adaptive optics systems[J]. Optics Express, 2014, 22(11):13792-13803. doi: 10.1364/OE.22.013792
    [6]
    Hu Lifa, Li Xuan, Liu Yongjun, et al. Phase-only liquid crystal spatial light modulator for wavefront correction with high precision[J]. Optics Express, 2004, 12(26):6403-6409. doi: 10.1364/OPEX.12.006403
    [7]
    曹召良, 李小平, 宣丽, 等.液晶自适应光学的研究进展[J].中国光学, 2012, 5(1):12-19. doi: 10.3969/j.issn.2095-1531.2012.01.002

    Cao Zhaoliang, Li Xiaoping, Li Xuan, et al.Recent progress in liquid crystal adaptive optical techniques[J]. Chinese Optics, 2012, 5(1):12-19. doi: 10.3969/j.issn.2095-1531.2012.01.002
    [8]
    Liu Chao, Mu Quanquan, Hu Lifa, et al. High precision Zernike modal gray map reconstruction for liquid crystal corrector[J]. Chinese Physics B, 2010, 19(6):064214. doi: 10.1088/1674-1056/19/6/064214
    [9]
    刘超, 孔宁宁, 胡立发, 等.液晶自适应光学系统中控制矩阵的精确测量[J].光学精密工程, 2009, 17(12):2899-07. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200912004

    Liu Chao, Kong Ningning, Hu Lifa, et al. Accurate measurement of control matrix in liquid crystal adaptive optical system[J]. Optics and Precision Engineering, 2009, 17(12):2899-07. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200912004
    [10]
    Zhang Xingyun, Hu Lifa, Cao Zhaoliang, et al. Improve the accuracy of interaction matrix measurement for liquid-crystal adaptive optics systems[J]. Optics Express, 2014, 22(12):14221-14228. doi: 10.1364/OE.22.014221
    [11]
    Dai Guangming. Modal compensation of atmospheric-turbulence with the use of Zernike polynomials and Karhunen-Loeve functions[J]. Journal of the Optical Society of America, 1995, 12(10):2182-2193. doi: 10.1364/JOSAA.12.002182
    [12]
    李新阳, 姜文汉, 王春红, 等, 湍流大气中哈特曼传感器的模式波前复原误差[J].强激光与离子束, 2000, 12(2):0149-06. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs200002006

    Li Xinyang, Jiang Wenhan, Wang Chunhong, et al. Modal reconstruction error of the hartmann sensor on measuring the atmosphere disturbed wavefront[J]. High Power Laser and Particle Beams, 2000, 12(2):0149-06. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs200002006
  • Related Articles

    [1]LIU Yanning, ZHANG Guobao. Design and research on pavement crack segmentation based on convolutional neural network[J]. Journal of Applied Optics, 2024, 45(2): 373-384. DOI: 10.5768/JAO202445.0202004
    [2]HOU Jinyao, LIU Weiguo, ZHOU Shun, GAO Aihua, GE Shaobo, XIAO Xiangguo. Image classification of optical element surface defects based on convolutional neural network[J]. Journal of Applied Optics, 2023, 44(3): 677-683. DOI: 10.5768/JAO202344.0305003
    [3]HOU Xiaoming, QIU Yafeng. Weather recognition method based on convolutional neural network and feature fusion[J]. Journal of Applied Optics, 2023, 44(2): 323-329. DOI: 10.5768/JAO202344.0202004
    [4]GUO Meng, DONG Xinming, HAN Guang, WANG Huiquan, WANG Zhongqiang, ZHAO Zhe. Research on accurate detection method of egg embryo activity based on convolutional neural network[J]. Journal of Applied Optics, 2021, 42(2): 268-275. DOI: 10.5768/JAO202142.0202003
    [5]ZHU Simin, ZHAO Haitao. Depth estimation of monocular infrared images based on attention mechanism and graph convolutional neural network[J]. Journal of Applied Optics, 2021, 42(1): 49-56. DOI: 10.5768/JAO202142.0102001
    [6]GU Jing, ZHANG Keshuai, ZHU Yiman. Research on weld defect image classification based on convolutional neural network[J]. Journal of Applied Optics, 2020, 41(3): 531-537. DOI: 10.5768/JAO202041.0302007
    [7]LIU Huaiguang, LIU Anyi, ZHOU Shiyang, LIU Hengyu, YANG Jintang. Research on detection agorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics, 2020, 41(2): 327-336. DOI: 10.5768/JAO202041.0202006
    [8]CHEN Qingjiang, SHI Xiaohan, CHAI Yuzhou. Image denoising algorithm based on wavelet transform and convolutional neural network[J]. Journal of Applied Optics, 2020, 41(2): 288-295. DOI: 10.5768/JAO202041.0202001
    [9]CHEN Qingjiang, ZHANG Xue. Image defogging algorithm combined with full convolution neural network[J]. Journal of Applied Optics, 2019, 40(4): 596-602. DOI: 10.5768/JAO201940.0402003
    [10]Wu Xueping, Sun Shaoyuan, Li Jiahao, Li Dawei. Infrared behavior recognition based on spatio-temporal two-stream convolutional neural networks[J]. Journal of Applied Optics, 2018, 39(5): 743-750. DOI: 10.5768/JAO201839.0506002
  • Cited by

    Periodical cited type(2)

    1. 黄婷,叶南,赵鹏飞. 基于光电跟踪瞄准技术的飞机地面校靶方法研究. 计算机测量与控制. 2025(03): 190-196 .
    2. 崔帅华,余磊,朱俊卿,姚天,熊邦书,欧巧凤. 基于透视变换的直升机桨根扭转角测量方法. 应用光学. 2023(02): 412-419 . 本站查看

    Other cited types(0)

Catalog

    Article views (1408) PDF downloads (149) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return