LIU Huaiguang, LIU Anyi, ZHOU Shiyang, LIU Hengyu, YANG Jintang. Research on detection agorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics, 2020, 41(2): 327-336. DOI: 10.5768/JAO202041.0202006
Citation: LIU Huaiguang, LIU Anyi, ZHOU Shiyang, LIU Hengyu, YANG Jintang. Research on detection agorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics, 2020, 41(2): 327-336. DOI: 10.5768/JAO202041.0202006

Research on detection agorithm of solar cell component defects based on deep neural network

More Information
  • Received Date: September 22, 2019
  • Revised Date: November 15, 2019
  • Available Online: March 31, 2020
  • Aiming at the problem that the cracked cell in the solar cell module eventually causes the whole cell to break and affect the power generation of the whole component, a method for detecting cracked defects of battery components using convolutional neural network network (CNN), is proposed based on the screening and positioning of the photoluminescence (PL) image of the battery component. The basic idea is to obtain the image of the battery component by using the PL detection technology first, then pre-process the image, filter and locate the target area based on the clustering method, and finally use three convolutional neural network models to detect the defect of the battery, and compare the accuracy. A large number of experimental results verify that the above method can accurately detect the cracking defects of solar cell modules.
  • [1]
    WENHAM S R, GREEN M A, WATT M E, et al. 应用光伏学[M]. 施正荣, 译. 上海: 上海交通大学出版社, 2008: 44-48.

    WENHAM S R, GREEN M A, WATT M E, et al. Applied photovoltaics[M]. SHI Zhengrong, translated. Shanghai: Shanghai Jiaotong University Press, 2008: 44-48.
    [2]
    钱晓亮, 张鹤庆, 陈永信, 等. 基于机器视觉的太阳能电池片表面缺陷检测研究现状及展望[J]. 北京工业大学学报,2017,43(1):76-85.

    QIAN Xiaoliang, ZHANG Heqing, CHEN Yongxin, et al. Research development and prospect of solar cells surface defects detection based on machine vision[J]. Journal of Beijing University of Technology,2017,43(1):76-85.
    [3]
    钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报,2017,38(7):1570-1578. doi: 10.3969/j.issn.0254-3087.2017.07.002

    QIAN Xiaoliang, ZHANG Heqing, ZHANG Huanlong, et al. Solar cell surface defect detection based on visual saliency[J]. Chinese Journal of Scientific Instrument,2017,38(7):1570-1578. doi: 10.3969/j.issn.0254-3087.2017.07.002
    [4]
    严婷婷, 张光春, 李果华, 等. 光致发光技术在Si基太阳电池缺陷检测中的应用[J]. 半导体技术,2010,35(5):454-457. doi: 10.3969/j.issn.1003-353x.2010.05.010

    YAN Tingting, ZHANG Guangchun, LI Guohua, et al. Application of photoluminescence for the testing of defects in crystalline silicon based solar cells[J]. Semiconductor Technology,2010,35(5):454-457. doi: 10.3969/j.issn.1003-353x.2010.05.010
    [5]
    DEITSCH S, CHRISTLEIN V, BERGER S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy,2019,185:455-468. doi: 10.1016/j.solener.2019.02.067
    [6]
    ZHANG Lei, LIANG Peng, ZHU Huishi, et al. Detection of finger interruptions in silicon solar cells using photoluminescence imaging[J]. Chinese Physics B,2018,27(6):556-561.
    [7]
    ANWAR S, ABDULLAH M. Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique[J]. EURASIP Journal on Image and Video Processing,2014(1):15.
    [8]
    XU P, ZHOU W J, FEI M R. Detection methods for micro-cracked defects of photovoltaic modules based on machine vision[C]//The 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems (CCIS). New York: IEEE, 2014: 609613.
    [9]
    王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006

    WANG Xianbao, LI Jie, YAO Minghai, et al. solar cells surface defects detection based on deep learning[J]. Pattern Recognition and Artificial Intelligence,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006
    [10]
    伍李春, 刘明周, 蒋倩男, 等. 基于人工神经网络的太阳能电池片表面质量检测系统[J]. 合肥工业大学学报: 自然科学版,2017,40(9):1176-1180.

    WU Lichun, LIU Mingzhou, JIANG Qiannan, et al. Solar cell surface quality detection system based on artificial neural network[J]. Journal of Hefei University of Technology: Natural Science,2017,40(9):1176-1180.
    [11]
    李岳云, 许悦雷, 马时平, 等. 深度卷积神经网络的显著性检测[J]. 中国图象图形学报,2016,21(1):53-59. doi: 10.11834/jig.20160107

    LI Yueyun, XU Yuelei, MA Shiping, et al. Saliency detection based on deep convolutional neural networks[J]. Journal of Image and Graphics,2016,21(1):53-59. doi: 10.11834/jig.20160107
    [12]
    杨帆, 李建平, 李鑫, 等. 基于多任务深度卷积神经网络的显著性对象检测算法[J]. 计算机应用,2017(1):91-96.

    YANG Fan, LI Jianping, LI Xin, et al. Salient object detection algorithm based on multi-task deep convolutional neural network[J]. Journal of Computer Applications,2017(1):91-96.
    [13]
    YAEE L , BOTTOU L,BENJIO Y. Gradient-based learning applied to document recognition[J]. USA:IEEE, 1998, 86(11):2278-2324.
    [14]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929-1958.
    [15]
    姚明海, 杨圳.基于轻量级卷积神经网络的实时缺陷检测方法研究[J]. 计算机测量与控制, 2019(6):22-25.

    YAO Minghai, YANG Zhen. Research on real-time defect detection method based on lightweight convolutional neural network [J]. Computer Measurement and Control, 2019(6): 22-25.

Catalog

    Article views (1019) PDF downloads (66) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return