Citation: | LIU Huaiguang, LIU Anyi, ZHOU Shiyang, LIU Hengyu, YANG Jintang. Research on detection agorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics, 2020, 41(2): 327-336. DOI: 10.5768/JAO202041.0202006 |
[1] |
WENHAM S R, GREEN M A, WATT M E, et al. 应用光伏学[M]. 施正荣, 译. 上海: 上海交通大学出版社, 2008: 44-48.
WENHAM S R, GREEN M A, WATT M E, et al. Applied photovoltaics[M]. SHI Zhengrong, translated. Shanghai: Shanghai Jiaotong University Press, 2008: 44-48.
|
[2] |
钱晓亮, 张鹤庆, 陈永信, 等. 基于机器视觉的太阳能电池片表面缺陷检测研究现状及展望[J]. 北京工业大学学报,2017,43(1):76-85.
QIAN Xiaoliang, ZHANG Heqing, CHEN Yongxin, et al. Research development and prospect of solar cells surface defects detection based on machine vision[J]. Journal of Beijing University of Technology,2017,43(1):76-85.
|
[3] |
钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报,2017,38(7):1570-1578. doi: 10.3969/j.issn.0254-3087.2017.07.002
QIAN Xiaoliang, ZHANG Heqing, ZHANG Huanlong, et al. Solar cell surface defect detection based on visual saliency[J]. Chinese Journal of Scientific Instrument,2017,38(7):1570-1578. doi: 10.3969/j.issn.0254-3087.2017.07.002
|
[4] |
严婷婷, 张光春, 李果华, 等. 光致发光技术在Si基太阳电池缺陷检测中的应用[J]. 半导体技术,2010,35(5):454-457. doi: 10.3969/j.issn.1003-353x.2010.05.010
YAN Tingting, ZHANG Guangchun, LI Guohua, et al. Application of photoluminescence for the testing of defects in crystalline silicon based solar cells[J]. Semiconductor Technology,2010,35(5):454-457. doi: 10.3969/j.issn.1003-353x.2010.05.010
|
[5] |
DEITSCH S, CHRISTLEIN V, BERGER S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy,2019,185:455-468. doi: 10.1016/j.solener.2019.02.067
|
[6] |
ZHANG Lei, LIANG Peng, ZHU Huishi, et al. Detection of finger interruptions in silicon solar cells using photoluminescence imaging[J]. Chinese Physics B,2018,27(6):556-561.
|
[7] |
ANWAR S, ABDULLAH M. Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique[J]. EURASIP Journal on Image and Video Processing,2014(1):15.
|
[8] |
XU P, ZHOU W J, FEI M R. Detection methods for micro-cracked defects of photovoltaic modules based on machine vision[C]//The 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems (CCIS). New York: IEEE, 2014: 609613.
|
[9] |
王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006
WANG Xianbao, LI Jie, YAO Minghai, et al. solar cells surface defects detection based on deep learning[J]. Pattern Recognition and Artificial Intelligence,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006
|
[10] |
伍李春, 刘明周, 蒋倩男, 等. 基于人工神经网络的太阳能电池片表面质量检测系统[J]. 合肥工业大学学报: 自然科学版,2017,40(9):1176-1180.
WU Lichun, LIU Mingzhou, JIANG Qiannan, et al. Solar cell surface quality detection system based on artificial neural network[J]. Journal of Hefei University of Technology: Natural Science,2017,40(9):1176-1180.
|
[11] |
李岳云, 许悦雷, 马时平, 等. 深度卷积神经网络的显著性检测[J]. 中国图象图形学报,2016,21(1):53-59. doi: 10.11834/jig.20160107
LI Yueyun, XU Yuelei, MA Shiping, et al. Saliency detection based on deep convolutional neural networks[J]. Journal of Image and Graphics,2016,21(1):53-59. doi: 10.11834/jig.20160107
|
[12] |
杨帆, 李建平, 李鑫, 等. 基于多任务深度卷积神经网络的显著性对象检测算法[J]. 计算机应用,2017(1):91-96.
YANG Fan, LI Jianping, LI Xin, et al. Salient object detection algorithm based on multi-task deep convolutional neural network[J]. Journal of Computer Applications,2017(1):91-96.
|
[13] |
YAEE L , BOTTOU L,BENJIO Y. Gradient-based learning applied to document recognition[J]. USA:IEEE, 1998, 86(11):2278-2324.
|
[14] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1):1929-1958.
|
[15] |
姚明海, 杨圳.基于轻量级卷积神经网络的实时缺陷检测方法研究[J]. 计算机测量与控制, 2019(6):22-25.
YAO Minghai, YANG Zhen. Research on real-time defect detection method based on lightweight convolutional neural network [J]. Computer Measurement and Control, 2019(6): 22-25.
|