Citation: | ZHU Simin, ZHAO Haitao. Depth estimation of monocular infrared images based on attention mechanism and graph convolutional neural network[J]. Journal of Applied Optics, 2021, 42(1): 49-56. DOI: 10.5768/JAO202142.0102001 |
[1] |
SILBERMAN N, DEREK H, et al. Indoor segmentation and support inference from RGBD Images[C]//Proceedings of the 12th European conference on Computer Vision. Berlin, Heidelberg: Springer, 2012: 740-746.
|
[2] |
EIGEN D, PUHRSCH C, FERGUS R. Depth map prediction from a single image using a multi-scale deep network[C]//NIPS’14 Proceedings of the 27th International Conference on Neural Information Processing Systems. USA: arXiv, 2014: 2366-2374.
|
[3] |
EIGEN D, FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]//2015 IEEE International Conference on Computer Vision (ICCV). USA: IEEE, 2015: 2650-2658.
|
[4] |
LAINA I, RUPPRECHT C, BELAGIANNIS V, et al. Deeper depth prediction with fully convolutional residual networks[C]//2016 Fourth International Conference on 3D Vision (3DV). Stanford, CA: IEEE, 2016: 239-248.
|
[5] |
HE Kaiming, ZHANG Xiangyu, et al. Deep residual learning for image recognition[C]//2016 IEEE CVF Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2016: 770-778.
|
[6] |
吴寿川, 赵海涛, 孙韶媛. 基于双向递归卷积神经网络的单目红外视频深度估计[J]. 光学学报,2017,37(12):246-254.
WU Shouchuan, ZHAO Haitao, SUN Shaoyuan. Depth estimation from monocular infrared video based on Bi-recursive convolutional neural network[J]. Acta Optica Sinica,2017,37(12):246-254.
|
[7] |
顾婷婷, 赵海涛, 孙韶媛. 基于帧间信息提取的单幅红外图像深度估计[J]. 激光与光电子学进展,2018,55(6):163-172.
GU Tingting, ZHAO Haitao, SUN Shaoyuan. Depth estimation of an infrared image based on interframe information extraction[J]. Laser & Optoelectronics Progress,2018,55(6):163-172.
|
[8] |
FISHER Y, VLADLEN K, et al. Multi-scale context aggregation by dilated convolutions [M]. USA:arXiv,2016: 1511.07122.
|
[9] |
LI Bo, DAI Yuchao, HE Mingyi,et al. Monocular depth estimation with hierarchical fusion of dilated CNNs and soft-weighted-sum inference[J]. Pattern Recognition,2018,83:328-339.
|
[10] |
FU H, GONG M, WANG C, et al. Deep ordinal regression network for monocular depth estimation[C]//2018 IEEE CVF Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2018: 2002-2011.
|
[11] |
BAHDANAU D, HYUN CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[M]. USA:arXiv,2015: 1409.0473.
|
[12] |
DAN Xu, WEI Wangdan, et al. Structured attention guided convolutional neural fields for monocular depth estimation[C]//2018 IEEE CVF Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2018: 3917-3925.
|
[13] |
LI R B, XIAN K, SHEN C H, et al. Deep attention-based classification network for robust depth prediction[M]//Computer Vision – ACCV 2018. Cham: Springer International Publishing, 2019: 663-678.
|
[14] |
陈裕如, 赵海涛. 基于自适应像素级注意力模型的场景深度估计[J]. 应用光学,2020,41(3):490-499.
CHEN Yuru, ZHAO Haitao. Depth estimation based on adaptive pixel-level attention model[J]. Journal of Applied Optics,2020,41(3):490-499.
|
[15] |
FU Junwei, LIANG Jun, WANG Ziyang. Monocular depth estimation based on multi-scale graph convolution networks[J]. IEEE Access,2020(8):997-1009.
|
[16] |
XU Keyulu, LI Chengtao, TIAN Yonglong, et al. Representation learning on graphs with jumping knowledge networks[M]. USA:arXiv,2018: 1806.03536.
|
[17] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[M/OL]. USA: arXiv, 2014: 1409-1556.
|