CHEN Qingjiang, SHI Xiaohan, CHAI Yuzhou. Image denoising algorithm based on wavelet transform and convolutional neural network[J]. Journal of Applied Optics, 2020, 41(2): 288-295. DOI: 10.5768/JAO202041.0202001
Citation: CHEN Qingjiang, SHI Xiaohan, CHAI Yuzhou. Image denoising algorithm based on wavelet transform and convolutional neural network[J]. Journal of Applied Optics, 2020, 41(2): 288-295. DOI: 10.5768/JAO202041.0202001

Image denoising algorithm based on wavelet transform and convolutional neural network

More Information
  • Received Date: May 06, 2019
  • Revised Date: June 21, 2019
  • Available Online: March 31, 2020
  • In the process of image generation and sensing, the image is often disturbed by the noise, which will increase the difficulty to the subsequent image processing and even bring the huge economic losses to some production activities. Combined the advantages of stationary wavelet transform with convolutional neural network, an effective image denoising algorithm was proposed. In the training stage, the proposed algorithm was adapted to decompose the image with a stationary wavelet of scale 1, and the high and low frequency components were input into the four designed residual networks for training respectively. In the test phase, the inverse wavelet transform was used to obtain the final predicted image. The experimental results show that when the level of Gaussian white noise reaches σ = 50, the mean of peak signal to noise ratio (PSNR) and structural similarity index method (SSIM) of the denoised image can reach 28.37 dB and 0.808 0. This algorithm can effectively remove the Gauss white noise and natural noise in visible image, and the noise generated by remote sensing image in the sensing process. Moreover, the proposed algorithm can preserve the edge and texture details of the image while removing the image noise.
  • [1]
    DONOHO D L. Denoising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995,41(3):613-627. doi: 10.1109/18.382009
    [2]
    SHARK L K, YU C. Denoising by optimal fuzzy thresholding in wavelet domain[J]. Electronics Letters,2000,36(6):581. doi: 10.1049/el:20000451
    [3]
    BIJALWAN A, GOYAL A, SETHI N. Wavelet transform based image denoise using threshold approaches[J]. International Journal of Engineering & Advanced Technology,2012(5):218-221.
    [4]
    DONOHO D L. Orthonormal ridgelets and linear singularities[J]. Siam Journal on Mathematical Analysis,2000,31(5):1062-1099. doi: 10.1137/S0036141098344403
    [5]
    STARCK J L, CANDES E J, DONOHO D L. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6): 670-684.
    [6]
    YI Q, WENG Y, HE J. Image denoise based on curvelet transform[C]. USA: IEEE Workshop on Electronics, Computer & Applications, 2014: 14416899.
    [7]
    PORTILLA J, STRELA V, WAINWRIGHT M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing,2003,12(11):1338-1351. doi: 10.1109/TIP.2003.818640
    [8]
    王敏, 周磊, 周树道, 等. 基于峰值信噪比和小波方向特性的图像奇异值去噪技术[J]. 应用光学,2013,34(1):85-89.

    WANG Min, ZHOU Lei, ZHOU Shudao, et al. Image SVD denoising based on PSNR and wavelet directional feature[J]. Journal of Applied Optics,2013,34(1):85-89.
    [9]
    吴海兵, 张良, 顾国华, 等. 基于低照度三基色图像去噪及融合彩色图像增强方法研究[J]. 应用光学,2018,39(1):57-63.

    WU Haibing, ZHANG Liang, GU Guohua, et al. Color image enhancement based on LLL tricolor image denoising and fusion[J]. Journal of Applied Optics,2018,39(1):57-63.
    [10]
    吴峰, 朱锡芳, 相入喜, 等. 基于双树复小波变换的遥感图像去云雾系统设计[J]. 应用光学,2018,39(1):64-70. doi: 10.5768/JAO201839.0102005

    WU Feng, ZHU Xifang, XIANG Ruxi, et al. Design of cloud and mist removal system from remote sensing images based on dual-tree complex wavelet transform[J]. Journal of Applied Optics,2018,39(1):64-70. doi: 10.5768/JAO201839.0102005
    [11]
    JAIN V, SEUNG H S. Natural image denoising with convolutional networks[C]//International Conference on Neural Information Processing Systems. NY: Curran Associates Inc., 2008: 769-776.
    [12]
    HARMELING S, SCHULER C J, BURGER H C. Image denoising: Can plain neural networks compete with BM3D?[C]//IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE Computer Society, 2012: 2392-2399.
    [13]
    ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: Residual learningof deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2016,26(7):3142-3155.
    [14]
    ZHANG K, ZUO W, ZHANG L. FFDNet: Toward a fast and flexible solution for CNN based image denoising[J]. IEEE Transactions on Image Processing,2017,27(9):4608-4622.
    [15]
    吴从中, 陈曦, 季栋, 等. 结合深度残差学习和感知损失的图像去噪[J]. 中国图像图形学报,2018,23(10):1483-1491.

    WU Congzhong, CHEN Xi, JI Dong, et al. Image denoising via residual network based on perceptual loss[J]. Journal of Image and Graphics,2018,23(10):1483-1491.
    [16]
    吕永标, 赵建伟, 曹飞龙. 基于复合卷积神经网络的图像去噪算法[J]. 模式识别与人工智能,2017,30(2):97-105.

    LYU Yongbiao, ZHAO Jianwei, CAO Feilong. Image denoising algorithm based on composite convolution neural network[J]. Pattern Recognition and Artificial Intelligence,2017,30(2):97-105.
    [17]
    马红强, 马时平, 许悦雷, 等. 基于改进栈式稀疏去噪自编码器的自适应图像去噪[J]. 光学学报,2018,38(10):128-135.

    MA Hongqiang, MA Shiping, XU Yuelei, et al. Adaptive image denoising based on improved stacked sparse denoising auto-encoder[J]. Acta Optica Sinica,2018,38(10):128-135.
    [18]
    ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[J]. IEEE, 2011,6669(5):479-486.
    [19]
    DONG W, ZHANG L, SHI G, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing,2013,22(4):1620. doi: 10.1109/TIP.2012.2235847
    [20]
    GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]// Computer Vision & Pattern Recognition. USA: IEEE, 2014: 2862-2869.
    [21]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2016: 770-778.
    [22]
    SCHMIDT U, ROTH S. Shrinkage fields for effective image restoration[C]//IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2014: 2774-2781.
    [23]
    DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,38(2):295-307.
    [24]
    DO M N, VETTERLI M. Contourlets: A new directional multiresolution image representation[C]//Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002. USA: IEEE, 2002: 497-501.
  • Cited by

    Periodical cited type(27)

    1. 王力,李小霞,秦佳敏,朱贺,周颖玥. 级联离散小波多频带分解注意力图像去噪方法. 计算机应用研究. 2024(01): 288-295 .
    2. 吴静,邵文莎,祝珊珊,周先春. 高斯曲率与波域LMS算法相结合的图像去噪扩散模型. 信息化研究. 2024(01): 45-52+62 .
    3. 谢国波,廖文康,林志毅,张家源. 基于MCRASN的遥感影像变化检测. 应用光学. 2024(02): 430-437 . 本站查看
    4. 李烨,江伟,陈晓俊,吴英杰,王思楠. 基于降水量距平百分率的1961—2020年鄂尔多斯气象干旱趋势. 干旱区研究. 2024(07): 1099-1111 .
    5. 汤力,梁国迪,王菁,刘跃龙. 基于机器视觉技术的表单图像缺陷矫正及自动识别方法. 自动化技术与应用. 2024(10): 52-55+138 .
    6. 张洪明,孙敏. 基于神经网络的数字图像去噪算法设计与仿真. 自动化与仪器仪表. 2023(02): 46-50 .
    7. 高雅男. 基于机器学习的武术动作姿势识别方法. 信息技术. 2023(02): 30-34+40 .
    8. 胡奕彬,周鑫,沈爱国,胡樾. 基于改进小波变换的图像去噪与融合. 齐齐哈尔大学学报(自然科学版). 2023(03): 33-38 .
    9. 刘家齐. 基于小波域的数字化媒体图像自适应模糊去重算法. 吉林大学学报(信息科学版). 2023(04): 701-708 .
    10. 於平. 基于贝叶斯阈值优化选取的图像动态降噪算法. 佳木斯大学学报(自然科学版). 2023(04): 60-62+94 .
    11. 孙国娇,李长硕. 基于可拓展机器学习的失真图像视觉复原仿真. 计算机仿真. 2023(08): 240-244 .
    12. 梁科. 基于改进小波变换的农村集体土地测绘图像高分辨率自适应重建方法. 计算技术与自动化. 2023(03): 107-112 .
    13. 王晓立,李爱萍. 反射型跨站脚本漏洞检测实验与仿真研究. 计算机仿真. 2023(11): 485-489 .
    14. 陈金山. 基于密度峰值的电子商务用户行为数据聚类方法. 哈尔滨师范大学自然科学学报. 2023(04): 65-69 .
    15. 曾展挺. 基于EMD-CLEAN的图像去噪方法. 计算技术与自动化. 2022(01): 112-116 .
    16. 邓禹,聂呈,彭君侠. 医学设备远程监控图像变换尺度精准去噪方法. 北京生物医学工程. 2022(03): 260-265+270 .
    17. 韩笑,韩剑. 基于融合分层视觉感知的人脸局部特征识别. 计算机仿真. 2022(07): 184-188 .
    18. 韩冰,李印鹏,张丽娟. 基于人工智能的红外图像特征点匹配方法. 激光杂志. 2022(10): 67-71 .
    19. 张敏,严小坚,张兵,李杰,陈宇源,田仁聪. 基于改进机器视觉的深基坑开挖土方量近景监测方法. 粉煤灰综合利用. 2022(06): 134-140 .
    20. 于淼,刘诚. 基于单次曝光光场成像的全焦图像重建技术. 应用光学. 2021(01): 71-78 . 本站查看
    21. 吴婷,褚泽帆,陈城,朱建勇. 基于灰度拉伸的图像水位识别方法研究. 高技术通讯. 2021(03): 327-332 .
    22. 井贝贝,郭嘉,王丽清,陈静,丁洪伟. 结合降噪卷积神经网络和条件生成对抗网络的图像双重盲降噪算法. 计算机应用. 2021(06): 1767-1774 .
    23. 樊博,金旭荣,田瑞,李昊怡. 一种2D-VMD与NLM结合的芯片图像去噪算法研究. 计算机测量与控制. 2021(06): 199-204 .
    24. 罗扬,薛俊玲. 基于ridgelet变换的图像直线特征检测算法研究. 金陵科技学院学报. 2021(02): 19-24 .
    25. 李长春,施锦锦,马春艳,崔颖琪,王艺琳,李亚聪. 基于小波变换和分数阶微分的冬小麦叶绿素含量估算. 农业机械学报. 2021(08): 172-182 .
    26. 周晓莺,余梓唐,全秋燕. 宽约束型包装袋垃圾分类模型设计. 塑料科技. 2020(10): 93-95 .
    27. 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪. 国土资源遥感. 2020(04): 46-52 .

    Other cited types(24)

Catalog

    Article views (1831) PDF downloads (106) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return