CHEN Qingjiang, ZHANG Xue. Image defogging algorithm combined with full convolution neural network[J]. Journal of Applied Optics, 2019, 40(4): 596-602. DOI: 10.5768/JAO201940.0402003
Citation: CHEN Qingjiang, ZHANG Xue. Image defogging algorithm combined with full convolution neural network[J]. Journal of Applied Optics, 2019, 40(4): 596-602. DOI: 10.5768/JAO201940.0402003

Image defogging algorithm combined with full convolution neural network

More Information
  • Received Date: October 14, 2018
  • Revised Date: November 29, 2018
  • Aiming at the problems of contrast reduction, saturation reduction and color migration of images collected in foggy environment, an image defogging algorithm based on full convolution neural network is put forward. First, the proposed three scales convolution neural network is used to study the fog of the mapping relationship between foggy image and medium transmission map, gradually produce the refine medium transmission map; secondly, the foggy image is used as a guide map to refine the forecasting medium transmission map, so as to make the edge information of the image more smooth; finally, the value of atmospheric light is estimated according to the dark channel prior theory, and the fog-free image is recovered by the atmospheric scattering model. The fog-free image obtained by this method not only causes no loss of useful information in the image, but also restores the color of the image naturally. Experimental results show that the algorithm proposed is superior to other comparison algorithms in both natural fog images and fog images produced by Middlebury Stereo Datasets, and the restored images have better contrast and clarity.
  • [1]
    FAN T H, MA X, LI C L, et al. An improved single image defogging method based on Retinex[C]// International Conference on Image, Vision and Computing. Chengdu, China: IEEE, 2017: 410-413.
    [2]
    COOPER T J, BAQAI F A. Analysis and extensions of the Frankle-McCann Retinex algorithm[J]. Journal of Electronic Imaging, 2004, 13(1):85-92. doi: 10.1117/1.1636182
    [3]
    TAN R T. Visibility in bad weather from a single image[C]//Computer Vision and Pattern Recognition. IEEE Conference on. Anchorage, AK, USA: IEEE, 2008: 1-8.
    [4]
    FATTAL R. Single image dehazing[J]. ACM transactions on Graphics, 2008, 27(3): 1-9.
    [5]
    MENG G F, WANG Y, DUAN J H, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 617-624.
    [6]
    LI Z W, TANG P, ZOU D P, et al. Simultaneous video defogging and stereo reconstruction[C]//Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015: 4988-4997.
    [7]
    HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [8]
    NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6): 713-724. doi: 10.1109/TPAMI.2003.1201821
    [9]
    ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533. doi: 10.1109/TIP.2015.2446191
    [10]
    高凯珺, 孙韶媛, 姚广顺, 等.基于深度学习的无人车夜视图像语义分割[J].应用光学, 2017, 38(3): 421-428. http://www.yygx.net/CN/abstract/abstract10953.shtml

    GAO Kaijun, SUN Shaoyuan, YAO Guangshun, et al. Semantic segmentation of night vision images for unmanned vehicles based on deep learning[J]. Journal of Applied Optics, 2017, 38(3): 421-428. http://www.yygx.net/CN/abstract/abstract10953.shtml
    [11]
    肖进胜, 刘恩雨, 朱力, 等.改进的基于卷积神经网络的图像超分辨率算法[J].光学学报, 2017, 37(3): 103-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201703011

    XIAO Jinsheng, LIU Enyu, ZHU Li, et al. Improved image super-resolution algorithm based on convolutional neural network[J]. Acta Optica Sinica, 2017, 37(3): 103-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201703011
    [12]
    蔺素珍, 韩泽.基于深度堆叠卷积神经网络的图像融合[J].计算机学报, 2017, 40(11): 2506-2518. doi: 10.11897/SP.J.1016.2017.02506

    LIN Suzhen, HAN Ze. Images fusion based on deep stack convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(11): 2506-2518. doi: 10.11897/SP.J.1016.2017.02506
    [13]
    REN W Q, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[M]//Computer Vision - ECCV 2016. Cham: Springer International Publishing, 2016: 154-169.
    [14]
    徐岩, 孙美双.基于多特征融合的卷积神经网络图像去雾算法[J].激光与光电子学进展, 2018, 55(3): 260-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201803031

    XU Yan, SUN Meishuang. Convolution neural network image defogging based on multi-feature fusion[J]. Laser & Optoelectronics Progress, 2018, 55 (3): 260-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201803031
    [15]
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. doi: 10.1109/TIP.2003.819861
    [16]
    MANNOS J L, SAKRISON D J. The effects of a visual fidelity criterion of the encoding of images[J]. IEEE Transactions on Information Theory, 1974, 20(4): 525-536. doi: 10.1109/TIT.1974.1055250
  • Cited by

    Periodical cited type(8)

    1. 郭栋,张树玲,甘志颖,郭峰. 类金刚石薄膜膜基结合强度优化技术研究进展. 宁夏工程技术. 2022(01): 84-91 .
    2. 张旺玺. 化学气相沉积法合成金刚石的研究进展. 陶瓷学报. 2021(04): 537-546 .
    3. 李党娟,王娜,吴慎将,苏俊宏. 不同工艺参数下DLC薄膜的应力状态. 真空科学与技术学报. 2020(05): 421-426 .
    4. 胡志方. 简述金刚石人工合成进展. 冶金与材料. 2020(03): 142+145 .
    5. 黄彪,张而耕,周琼,陈永康. 石墨靶溅射时间对Ta-C涂层性能的影响. 陶瓷学报. 2019(03): 318-324 .
    6. 丁雪兴,赵海红,金海俊,魏龙,金良. 干气密封两种典型螺旋角与DLC薄膜的摩擦性能. 石油化工高等学校学报. 2018(04): 82-89 .
    7. 张而耕,黄彪,何澄,周琼. 新型Ta-C涂层铣刀切削性能研究. 表面技术. 2017(06): 125-130 .
    8. 董中林,于振华,施毅,李琦,杨木,王永庆,干蜀毅. 脉冲偏压对磁过滤阴极电弧离子镀ta-C薄膜性能的影响. 真空科学与技术学报. 2017(01): 78-82 .

    Other cited types(22)

Catalog

    Article views (1904) PDF downloads (95) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return