Citation: | ZHANG Fei, ZHENG Hao, LI Pengfei, CHEN Hui, DING Jie, QI Yaoyao, YAN Bingzheng, WANG Yulei, LYU Zhiwei, BAI Zhenxu. Numerical simulation of thermal effects in high-power diamond Raman lasers[J]. Journal of Applied Optics, 2023, 44(6): 1201-1211. DOI: 10.5768/JAO202344.0610006 |
Diamond crystals not only have excellent optical properties, but also have extremely high thermal conductivity and low thermal expansion coefficient, which makes diamond laser an important path to achieve high-power laser output without heat. However, with the further increase of laser power, thermal effects that cannot be ignored in diamond Raman lasers (DRLs), which poses a challenge to the performance improvement of diamond lasers. The thermal effect of the DRLs under high power operation was studied theoretically. Based on the thermal conduction equation and finite element analysis method, the temperature, thermal stress and thermal deformation distribution of diamond were simulated, and the effects of pump and crystal parameters on the above factors were analyzed. Moreover, a novel heat sink structure for diamond was designed based on the transverse thermal conductivity characteristics of graphite sheets. Compared with traditional heat dissipation methods of single copper-sheet, under the pump power of 800 W and waist radius of 40 μm, the center temperature of the diamond was reduced by 10.16 K, the average stress on the lower surface was reduced by 19.857 MPa, and the average deformation of the end face was reduced by 0.055 μm. The numerical simulation results show that this method has important guiding significance for mitigating the thermal effect of diamond laser, further enhancing the output power of DRLs and achieving high beam quality laser output.
[1] |
JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J]. Nature Photonics,2013,7(11):861-867. doi: 10.1038/nphoton.2013.273
|
[2] |
丁宇, 姜锋, 郑荣山, 等. 美国高能激光武器发展概况(特邀)[J]. 光电技术应用,2021,36(6):1-9.
DING Yu, JIANG Feng, ZHENG Rongshan, et al. Overview of high energy laser weapon development in USA (invited)[J]. Electro-Optic Technology Application,2021,36(6):1-9.
|
[3] |
朱孟真, 陈霞, 刘旭, 等. 战术激光武器反无人机发展现状和关键技术分析[J]. 红外与激光工程,2021,50(7):20200230.
ZHU Mengzhen, CHEN Xia, LIU Xu, et al. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering,2021,50(7):20200230.
|
[4] |
周朴, 姚天甫, 范晨晨, 等. 拉曼光纤激光: 50年的历程、现状与趋势(特邀)[J]. 红外与激光工程,2022,51(1):20220015.
ZHOU Pu, YAO Tianfu, FAN Chenchen, et al. 50th anniversary of Raman fiber laser: history, progress and prospect (invited)[J]. Infrared and Laser Engineering,2022,51(1):20220015.
|
[5] |
SUPRADEEPA V R, FENG Y, NICHOLSON J W. Raman fiber lasers[J]. Journal of Optics,2017,19(2):023001. doi: 10.1088/2040-8986/19/2/023001
|
[6] |
HUO X W, QI Y Y, ZHANG Y, et al. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and Lasers in Engineering,2020,134:106207. doi: 10.1016/j.optlaseng.2020.106207
|
[7] |
白振旭, 陈晖, 李宇琪, 等. 基于金刚石拉曼转换的光束亮度增强研究进展[J]. 红外与激光工程,2021,50(1):20200098.
BAI Zhenxu, CHEN Hui, LI Yuqi, et al. Development of beam brightness enhancement based on diamond Raman conversion[J]. Infrared and Laser Engineering,2021,50(1):20200098.
|
[8] |
张亚凯, 陈晖, 白振旭, 等. 多波长红光金刚石拉曼激光器[J]. 红外与激光工程,2023,52(8):20230329.
ZHANG Yakai, CHEN Hui, BAI Zhenxu, et al. Multi-wavelength red diamond Raman laser[J]. Infrared and Laser Engineering,2023,52(8):20230329.
|
[9] |
白振旭, 杨学宗, 陈晖, 等. 高功率金刚石激光技术研究进展(特邀)[J]. 红外与激光工程,2020,49(12):20201076. doi: 10.3788/irla.35_2020-12by
BAI Zhenxu, YANG Xuezong, CHEN Hui, et al. Research progress of high-power diamond laser technology (invited)[J]. Infrared and Laser Engineering,2020,49(12):20201076. doi: 10.3788/irla.35_2020-12by
|
[10] |
WILLIAMS R J, KITZLER O, BAI Z X, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics,2018,24(5):1602214.
|
[11] |
JASBEER H, WILLIAMS R J, KITZLER O, et al. Wavelength diversification of high-power external cavity diamond Raman lasers using intracavity harmonic generation[J]. Optics Express,2018,26(2):1930-1941. doi: 10.1364/OE.26.001930
|
[12] |
SARANG S, RICHARDSON M. Power scaling of CW crystalline OPOs and Raman lasers[J]. Photonics,2021,8(12):565-571. doi: 10.3390/photonics8120565
|
[13] |
白振旭, 陈晖, 张展鹏, 等. 百瓦级1.2/1.5 μm双波长金刚石拉曼激光器(特邀)[J]. 红外与激光工程,2021,50(12):20210685.
BAI Zhenxu, CHEN Hui, ZHANG Zhanpeng, et al. Hundred-watt dual-wavelength diamond Raman laser at 1.2/1.5 μm (invited)[J]. Infrared and Laser Engineering,2021,50(12):20210685.
|
[14] |
ANTIPOV S, SABELLA A, WILLIAMS R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam[J]. Optics Letters,2019,44(10):2506-2509. doi: 10.1364/OL.44.002506
|
[15] |
BAI Z X, WILLIAMS R J, KITZLER O, et al. 302 W quasi-continuous cascaded diamond Raman laser at 15 microns with large brightness enhancement[J]. Optics Express,2018,26(16):19797-19803. doi: 10.1364/OE.26.019797
|
[16] |
YANG X Z, KITZLER O, SPENCE D J, et al. Diamond sodium guide star laser[J]. Optics Letters,2020,45(7):1898-1901. doi: 10.1364/OL.387879
|
[17] |
BAI Z X, WILLIAMS R J, JASBEER H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion[J]. Optics Letters,2018,43(3):563-566. doi: 10.1364/OL.43.000563
|
[18] |
白振旭, 陈晖, 丁洁, 等. 基于空间光腔的高功率布里渊频率梳[J]. 中国激光,2022,49(4):0415001.
BAI Zhenxu, CHEN Hui, DING Jie, et al. High-power Brillouin frequency comb based on free-space optical cavity[J]. Chinese Journal of Lasers,2022,49(4):0415001.
|
[19] |
CHEN H, BAI Z X, CAI Y P, et al. Order controllable enhanced stimulated Brillouin scattering utilizing cascaded diamond Raman conversion[J]. Applied Physics Letters,2023,122(9):092202. doi: 10.1063/5.0137542
|
[20] |
WILLIAMS R J, NOLD J, STRECKER M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond[J]. Laser & Photonics Reviews,2015,9(4):405-411.
|
[21] |
PASHININ V P, RALCHENKO V G, BOLSHAKOV A P, et al. External-cavity diamond Raman laser performance at 1 240 nm and 1 485 nm wavelengths with high pulse energy[J]. Laser Physics Letters,2016,13(6):065001. doi: 10.1088/1612-2011/13/6/065001
|
[22] |
ANTIPOV S, WILLIAMS R J, SABELLA A, et al. Analysis of a thermal lens in a diamond Raman laser operating at 1.1 kW output power[J]. Optics Express,2020,28(10):15232-15239. doi: 10.1364/OE.388794
|
[23] |
MILDREN R, RABEAU J. Optical engineering of diamond[M]. Germany: John Wiley & Sons, 2013:353-384 .
|
[24] |
MCKAY A, LIU H, KITZLER O, et al. An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1 240 nm) and second (1 485 nm) Stokes output[J]. Laser Physics Letters,2013,10(10):105801. doi: 10.1088/1612-2011/10/10/105801
|
[25] |
LI Y L, DING J, BAI Z X, et al. Diamond Raman laser: a promising high-beam-quality and low-thermal-effect laser[J]. High Power Laser Science and Engineering,2021,9:e35. doi: 10.1017/hpl.2021.25
|
[26] |
BAI Z X, ZHANG Z P, WANG K, et al. Comprehensive thermal analysis of diamond in a high-power Raman cavity based on FVM-FEM coupled method[J]. Nanomaterials,2021,11(6):1572-1579. doi: 10.3390/nano11061572
|
[27] |
GONG Q X, ZHANG M X, LIN C N, et al. Analysis of thermal effects in kilowatt high power diamond Raman lasers[J]. Crystals,2022,12(12):1824. doi: 10.3390/cryst12121824
|
[28] |
FROMZEL V, TER-GABRIELYAN N, DUBINSKII M. Efficient resonantly-clad-pumped laser based on a Er: YAG-core planar waveguide[J]. Optics Express,2018,26(4):3932-3937. doi: 10.1364/OE.26.003932
|
[29] |
LIU J, WU J D, CHEN H L, et al. Short-pulsed Raman fiber laser and its dynamics[J]. Science China Physics, Mechanics & Astronomy,2020,64(1):1-21.
|
[30] |
YU W L, YAN P, XIAO Q R, et al. Power scalability of a continuous-wave high-power Er-Yb co-doped fiber amplifier pumped by Yb-doped fiber lasers[J]. Applied Optics,2021,60(7):2046-2055. doi: 10.1364/AO.416515
|
[31] |
WANG Q C, LONG Q L, GAO Y A, et al. High-efficiency Ho:YLF slab laser with 125 W continuous-wave output power[J]. Applied Optics,2021,60(26):8046-8049. doi: 10.1364/AO.434708
|
[32] |
MI S, LI J, WEI D, et al. 105 W continuous-wave diode-pumped Tm:YAP slab laser with high beam quality[J]. Optics & Laser Technology,2021,138:106847.
|
[33] |
NAGEL S, METZGER B, BAUER D, et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality[J]. Optics Letters,2021,46(5):965-968. doi: 10.1364/OL.416432
|
[34] |
AHMED M A, BEIROW F, LOESCHER A, et al. High-power thin-disk lasers emitting beams with axially symmetric polarizations[J]. Nanophotonics,2022,11(4):835-846. doi: 10.1515/nanoph-2021-0606
|
[35] |
TU H, MA S H, HU Z G, et al. Efficient monolithic diamond Raman yellow laser at 572.5 nm[J]. Optical Materials,2021,114:110912. doi: 10.1016/j.optmat.2021.110912
|
[36] |
YAO Q Q, DONG Y, WANG Q, et al. Beam quality improvement by controlling thermal lens spherical aberration in an end-pumped Nd:YVO4 laser[J]. Applied Optics,2018,57(9):2245-2249. doi: 10.1364/AO.57.002245
|
[37] |
RAMESH K N, SHARMA T K, RAO G A P. Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review[J]. Archives of Computational Methods in Engineering,2021,28(4):3135-3165. doi: 10.1007/s11831-020-09495-1
|
[38] |
KIM K J, HAN B, BAR-COHEN A. Thermal and optical performance of cryogenically cooled laser diode bars mounted on pin-finned microcoolers[J]. Applied Physics B,2021,127:1-9.
|
[39] |
FANG J Y, ZHANG H, ZOU Y G, et al. Thermal management of a semiconductor laser array based on a graphite heat sink[J]. Applied Optics,2019,58(28):7708-7715. doi: 10.1364/AO.58.007708
|
[40] |
DING J, LI Y L, CHEN H, et al. Thermal modeling of an external cavity diamond Raman laser[J]. Optics & Laser Technology,2022,156:108578.
|
[41] |
ZHANG H, WEN Y, ZHANG L, et al. Influences of pump spot radius and depth of focus on the thermal effect of Tm:YAP crystal[J]. Current Optics and Photonics,2019,3(5):458-465.
|
[1] | TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004 |
[2] | TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. DOI: 10.5768/JAO202344.0101002 |
[3] | Bai Yang, Chen Yuhua, Zhang Zenan, Li Weilong, Wang Gang. Experimental study on nonlinear scattering of graphene using tunable mid-infrared laser in 3 μm~5 μm wave band[J]. Journal of Applied Optics, 2016, 37(4): 618-622. DOI: 10.5768/JAO201637.0406001 |
[4] | SHAO Ming, ZHANG Le, ZHANG Lei-lei, CHAI Guo-qing, HU Hu-xiang. Comparative study on saturation effect of 1.06 μm laser jamming CCD and CMOS cameras[J]. Journal of Applied Optics, 2014, 35(1): 163-167. |
[5] | SHI Rui-ping, BAI Yang, QI Mei, WEI Hong-duo, REN Zhao-yu, BAI Jin-tao. 1 064 nm CW mode-locked ultrashort pulse laser based on graphene saturable absorber[J]. Journal of Applied Optics, 2014, 35(1): 159-162. |
[6] | XU Qin-zu. Optical limiting mechanism of suspended carbon nanotubes[J]. Journal of Applied Optics, 2010, 31(5): 819-824. |
[7] | WANG Long, SHEN Xue-ju, HAN Yu-dong, LI Zheng. Intensity distribution of Gaussian beam transmitting through medium with nonlinear refraction and absorption[J]. Journal of Applied Optics, 2010, 31(1): 164-168. |
[8] | LI De-chuan, WANG Ming-jian, FANG Xiang-yun, LI Jian. Reverse saturable absorption property of organic material[J]. Journal of Applied Optics, 2009, 30(1): 172-176. |
[9] | LU Jian-min, SHAO Li-tang, TANG Guang-hua, WANG Shi-min. Nonlinear compensation of in-situ monitoring SO2 concentration in flue gas by DOAS[J]. Journal of Applied Optics, 2008, 29(6): 859-862. |
[10] | LIU Xiao-jie, YIN Hai-tao. The influence of optical physics parameters on optical limiting effect[J]. Journal of Applied Optics, 2006, 27(1): 9-11. |
1. |
苏红,李臻元,龚海彬,王世兴. 基于Z扫描系统的石墨烯非线性吸收特性研究. 光学技术. 2019(04): 482-485 .
![]() |