SHI Rui-ping, BAI Yang, QI Mei, WEI Hong-duo, REN Zhao-yu, BAI Jin-tao. 1 064 nm CW mode-locked ultrashort pulse laser based on graphene saturable absorber[J]. Journal of Applied Optics, 2014, 35(1): 159-162.
Citation: SHI Rui-ping, BAI Yang, QI Mei, WEI Hong-duo, REN Zhao-yu, BAI Jin-tao. 1 064 nm CW mode-locked ultrashort pulse laser based on graphene saturable absorber[J]. Journal of Applied Optics, 2014, 35(1): 159-162.

1 064 nm CW mode-locked ultrashort pulse laser based on graphene saturable absorber

More Information
  • A 1 064 nm continuous wave (CW) passively mode-locked ultrashort pulse laser based on graphene saturable absorber was reported. The graphene film was deposited on an antireflection lens, the Nd∶YVO4 crystal was pumped by 808 nm laser diode. On the basis of W-folded cavity, the stable pulses of CW mode-locked were obtained with the average output power of 185 mW when the pump power reached 8.0 W. When pump power reached 16.0 W, the 1 064 nm CW mode-locked ultrashort laser with the average output power of 323 mW, the pulse width of 518 fs and the repetition rate of 66.7 MHz was obtained, which spectrum was centered at 1063.4 nm. Experiment results shows that graphene is an excellent saturable absorber for stable and reliable passively mode-locked pulse generation around 1 064 nm wavelength.
  • [1]KELLER U, MILLER D A,BOYD G D, et al. Solid-state low-loss intracavity saturable absorber for Nd∶YLF lasers: an antiresonant semiconductor fabry-perot saturable absorber [J] . Opt. Lett., 1992, 17 (7): 505-507.
    [2]AGNESI A, GREBORIO A, PIRZIO F, et al. 80-fs Nd∶silicate glass laser pumped by a single-mode 200-mW diode [J]. Opt. Express, 2010, 18 (10): 10098-10103.
    [3]ZHOU B, WEI Z, ZOU Y, et al. High-efficiency diode-pumped femtosecond Yb∶YAG ceramic laser [J]. Opt. Lett., 2010, 35 (3): 288-290.
    [4]LIU S D, JIA Z T, HE J L, et al. Generation of 3.3-ps pulses at 1.34 μm from high-power passively mode-locked Nd∶GdVO4 laser [J]. IEEE Journal of Quantum Electronics, 2012, 48 (5): 622-627.
    [5]SET S Y, YAGUCHI H, TANAKA Y, et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes [J]. J. Lightwave Technol., 2004, 22 (1): 51-56. 
    [6]KIEU K, JONES J, PEYGHAMBARIAN N. Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system [J] . IEEE Photonics Technol Lett., 2010, 22(20):1521-1523.
    [7]CHEN H R, WANG Y G, TSAI C Y, et al. High-power passively mode-locked Nd∶GdVO4 laser using single-walled carbon nanotubes as saturable absorber[J]. Opt. Lett., 2011, 36 (7): 1284-1286.
    [8]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306 (5696): 666-669.
    [9]BAO Q L, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers [J]. Adv. Funct. Mater., 2009, 19 (19): 3077-3083.
    [10]BAO Q, ZHANG H, YANG J, et al. Graphene-polymer nanofiber membrane for ultrafast photonics [J]. Adv. Funct. Mater., 2010, 20 (5): 782-791.
    [11]于海娟,林学春,张玲,等.瓦级石墨烯被动锁模全固态激光器[J].中国激光, 2011,38 (2): 0202004.
    YU Hai-juan, LIN Xue-chun, ZHANG Ling, et al. Passively mode-locked all solid state laser based on graphene saturable absorber [J].  Chinese Journal of Lasers, 2011,38(2): 0202004. (in Chinese with an English abstract)
    [12]ZHU Y, SUN Z, YAN Z, et al. Rational design of hybrid graphene films for high-performance transparent electrodes[J]. ACS Publications, 2011, 5 (8): 6472-6479.
    [13]POPA D, SUN Z, TORRISI F, et al. Sub 200 fs pulse generation from a graphene mode-locked fiber laser [J]. Appl. Phys. Lett., 2010, 97 (20): 203106.
    [14]田振,刘山亮,张丙元,等.石墨烯锁模掺铒光纤脉冲激光器的实验研究[J].中国激光, 2011, 38(3):0302004.
    TIAN Zhen, LIU Shan-liang, ZHANG Bing-yuan, et al. Graphene mode-locked Er3+doped fiber pulse laser [J]. Chinese Journal of Lasers, 2011, 38 (3): 0302004. (in Chinese with an English abstract)
    [15]WANG Qing-qing, CHEN Tong, ZHANG Bo-tao, et al. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers [J] . Appl. Phys. Lett., 2013, 102(13): 131117.
    [16]NAKAMURA M, IRIE M, YUGE R, et al. Carboxylation of thin graphitic sheets is faster than that of carbon nanohorns[J]. Phys. Chem., 2013,15(39):16672-5.
    [17]向望华,任恺,刘浩,等.掺Yb3+光纤F-P腔被动锁模激光器的实验研究[J].强激光与粒子束,2007,19(9):1444-1448.
    XIANG Wang-hua, REN Kai, LIU Hao, et al. Experimental study on passive mode-locked Yb3+ doped fiber laser with F-P cavity[J]. High Power Laser and Particle Beams, 2007, 19 (9):1444-1448.(in Chinese with an English abstract)
  • Related Articles

    [1]ZHU Wenjie, LING He, YANG Shoupeng. Research on compensation for positioning errors of carbody welding points based on binocular vision[J]. Journal of Applied Optics, 2021, 42(1): 79-85. DOI: 10.5768/JAO202142.0102005
    [2]CUI Enkun, TENG Yanqing, LIU Jiawei. Calibration error compensation technique of stereoscopic vision measurement system[J]. Journal of Applied Optics, 2020, 41(6): 1174-1180. DOI: 10.5768/JAO202041.0601006
    [3]SU Chengzhi, YAN Chun, WANG Fei, ZHANG Chengshuang, BAO Yanling, RUAN Yingbo. Research on error compensation method for infrared temperature measurement under laser irradiation[J]. Journal of Applied Optics, 2019, 40(6): 1084-1090. DOI: 10.5768/JAO201940.0603001
    [4]Hao Chunyan, Gao Tianyuan, Lao Dabao, Zhou Weihu, Zhu Qifan. Error analysis for large-scale planar laser scanning and compensation system[J]. Journal of Applied Optics, 2018, 39(1): 124-129. DOI: 10.5768/JAO201839.0107002
    [5]Li Liangfu, Zou Bin, Zhou Guoliang, Wang Chao, He Junfeng. Repair and error compensation method for depth image based on optimization estimation[J]. Journal of Applied Optics, 2018, 39(1): 45-50. DOI: 10.5768/JAO201839.0101008
    [6]Ye Su, Ye Yu-tang, Liu Juan-xiu, Liu Lin, Du Chun-lei. Error compensation for trim puncher based on rapid super-resolution measurement[J]. Journal of Applied Optics, 2015, 36(3): 454-459. DOI: 10.5768/JAO201536.0305002
    [7]Zhang Feng, Wang Zhi-bin, Zhang Yun-long, Guo Xiao-gang, Su Ying, Guo Rui. Diamond turning compensation techniques of diffractive optical elements[J]. Journal of Applied Optics, 2014, 35(6): 1058-1062.
    [8]ZHANG Lei, ZHENG Yang, HE Wen-jun, WANG Jia-ke, ZHENG Jian-ping. Automatic directional benchmark based on liquid optical compensation[J]. Journal of Applied Optics, 2011, 32(6): 1053-1058.
    [9]LIU Xin, SU Ying, ZHI Xi-ling, YANG Chong-min, LIU Xin-wu, FAN Chun-li. Error compensation for pentagonal prism[J]. Journal of Applied Optics, 2010, 31(1): 124-127.
    [10]WANG Yi-zhe. Effect of Error Auto-compensation and Error of the Extremely Narrow-band Interference Filter in DWDM System[J]. Journal of Applied Optics, 2004, 25(1): 46-51.
  • Cited by

    Periodical cited type(2)

    1. 赵志草,吴辉,郑凤翥,张文博,王冠. 多失效模式光电系统可靠性建模分析方法. 应用光学. 2022(04): 635-640 . 本站查看
    2. 杨曈,王凡,倪晋平,曾辉. 基于蒙特卡罗法的水下激光光幕探测性能研究. 应用光学. 2019(03): 454-460 . 本站查看

    Other cited types(0)

Catalog

    Article views (2135) PDF downloads (517) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return