TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004
Citation: TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004

Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure

More Information
  • Received Date: January 18, 2024
  • Revised Date: March 11, 2024
  • Available Online: September 10, 2024
  • To realize high efficiency absorption of ultra-wide optical spectrum radiation from ultraviolet to infrared, it was designed that 0.2 μm~20 μm optical metamaterial absorption structure with high efficiency absorption. It was designed by the method of ultra-wide band partition set, 5 separate layers optimal design and non uniform sampling to get the parameters of equivalent resonant circuit of 3 scale 5 separate layers metamaterial absorption structure, and the structure parameters of each layer was obtained and the absorption property was analyzed and discussed. Simulation experimental results show that, the total thickness of metamaterial absorption structure is about 3.14 μm, the absorption efficiency is better than 89% in 0.2 μm~20 μm wavelength range, and the absorption bandwidth ratio is near 100%, which can satisfy the constrain requirement of frequency range and absorption efficiency. This method can realize coherent and continuous absorption structure design in ultra-wide band frequency range, with absorption band expanding 45.26% in each partition and with total absorption band expanding 81.57% more than expected, the absorption bandwidth ratio is about 85.11%, that absorption efficiency is better than 80%. It can be applied in ultra-wide spectrum detection and confrontation stealth.

  • [1]
    李云霞, 蒙文, 马丽华, 等. 光电对抗原理与应用[M]. 西安: 西安电子科技大学出版社, 2009.

    LI Yunxia, MENG Wen, MA Lihua, et al. Passive locating technology[M]. Xi'an: Xidian University Press, 2009.
    [2]
    付小宁, 王炳健, 王荻. 光电定位与光电对抗技术[M]. 北京: 电子工业出版社, 2012.

    FU Xiaoning, WANG Bingjian, WANG Di. Electro-optic ranging & countermeasure[M]. Beijing: Publising House of Electronics Industry, 2012.
    [3]
    白廷柱. 光电成像技术与系统[M]. 北京: 电子工业出版社, 2016.

    BAI Tingzhu. Electro-optic imaging technology and system[M]. Beijing: Publising House of Electronics Industry, 2016.
    [4]
    王大鹏, 吴卓昆, 王东风. 红外对抗技术原理[M]. 北京: 国防工业出版社, 2021

    WANG Dapeng, WU Zhuokun, WANG Dongfeng. Principle and technology of infrared countermeasure[M]. Beijing: National Defense Industry Press, 2021.
    [5]
    王晓蕊. 光电成像系统: 建模、仿真、测试与评估[M]. 西安: 西安电子科技大学出版社, 2017.

    WANG Xiaorui. Electro-optic imaging system: modeling, simulation, tesing and evaluation[M]. Xi’an: Xidian University Press, 2017.
    [6]
    吕通, 张辰威, 刘甲, 等. 吸波超材料研究进展[J]. 复合材料学报, 2021, 38(1): 25-35.

    LÜ Tong, ZHANG Chenwei, LIU Jia, et al. Research progress in metamaterial absorber[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 25-35.
    [7]
    LI W, HUANG W, WANG X, , et al. Metamaterial absorbers: from tunable surface to structural transformation. advanced materials, Advanced Materials, 2022, 34(38): 2202509.
    [8]
    ZHANG K, HOU Z, BI S, et al. Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate[J]. Chinese Physics B, 2017, 26(12): 127802. doi: 10.1088/1674-1056/26/12/127802
    [9]
    DING F, CUI Y, GE X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506. doi: 10.1063/1.3692178
    [10]
    蒲明博. 亚波长结构材料的宽带频率响应特性研究[D]. 成都: 中国科学院大学, 2013.

    PU Mingbo. Study on the broadband frequency response of subwavelength metamaterial[D]. Chengdu: University of Chinese Academy of Sciences, 2013.
    [11]
    熊汉. 电磁超材料在微波吸波体与天线中的应用研究[D]. 成都: 电子科技大学, 2014.

    XIONG Han. Research on the application of electromagnetic metamaterial in microwave absorber and antenna[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [12]
    LI X, YU L, ZHAO W, et al. Prism-shaped hollow carbon decorated with poly aniline for microwave absorption[J]. Chemical Engineering Journal, 2020, 379: 122393. doi: 10.1016/j.cej.2019.122393
    [13]
    CHEN X, WU Z, ZHANG Z, et al. Ultra-broadband and wide-angle absorption base don 3D-printed pyramid[J]. Optics & Laser Technology, 2020, 124: 105972.
    [14]
    ZHANG Y, PAN L, ZHANG P, et al. Gradient multilayer design of Ti3xC2Tx MXene nanocomposite for strong and broadband microwave absorption[J]. Small Science, 2022(2): 22000.
    [15]
    HUANG Z, CHEN H, HUANG Y, et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam[J]. Advanced Functional Materials, 2018, 28(2): 1704363. doi: 10.1002/adfm.201704363
    [16]
    XIAO D, ZHU M, WANG Q, et al. A flexible and ultra-broadband terahertz wave absorber based on graphenevertically aligned carbon nanotube hybrids[J]. Journal of Materials Chemistry C, 2020, 8(21): 7244-7252. doi: 10.1039/D0TC01023E
    [17]
    CHENG X, HUANG R, XU X, et al. Broadband terahertz near-perfect absorbers[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 33352-33360
    [18]
    檀立刚, 骆明伟, 李捷. 基于双尺度4分离层优化的石墨烯太赫兹宽带吸波结构[J]. 应用光学, 2023, 44(1): 6-16. doi: 10.5768/JAO202344.0101002

    TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure whit graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. doi: 10.5768/JAO202344.0101002
    [19]
    CUI Y X, XU J, FUNG K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101. doi: 10.1063/1.3672002
    [20]
    CUI Y X, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443. doi: 10.1021/nl204118h
    [21]
    张楠. 基于表面等离子体激元特性的红外超材料吸波结构及其热辐射调控研究[D]. 成都: 电子科技大学, 2015.

    ZHANG Nan. Research on infrared metamaterial absorbers and their thermal eadiation controlling based on surface plamsmon polaritons[D]. Chengdu: University of Electronic Science and Technology of China, 2015.
    [22]
    冯睿. 红外波段周期微结构近完美吸收特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    FENG Rui. Study on nearly perfect absorption of infrared periodic micro-structure [D]. Harbin: Harbin Institute of Technology, 2015.
    [23]
    王其桢. 铝基方环微结构红外吸收特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WANG Qizhen. Infrared absorption characteristics analysis for square loop nanostructure of Al substrate [D]. Harbin: Harbin Institute of Technology, 2015.
    [24]
    ZHOU Y, LIANG Z, QIN Z, et al. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity[J]. Optics Express, 2020, 28(2): 1279-1290. doi: 10.1364/OE.382776
    [25]
    秦正, 梁中翥, 史晓燕, 等. 中红外-甚长波多模式谐振三波段超材料吸波体[J]. 红外与激光工程, 2022, 51 (7): 78-82.

    QIN Zheng, LIANG Zhongzhu, SHI Xiaoyan, et al. Mutimode resonance triple-band metamaterial absorber from mid-infrared to very long wavelengths[J]. Infrared And Laser Engineering, 2022, 51(7): 78-82.
  • Related Articles

    [1]TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. DOI: 10.5768/JAO202344.0101002
    [2]ZHANG Bohan, YANG Jun, XIE Xingjuan, JIANG Yanhuan. CO2 positive pressure measurement technology based on absorption spectroscopy[J]. Journal of Applied Optics, 2022, 43(1): 106-110. DOI: 10.5768/JAO202243.0103006
    [3]LIU Feng, GALLAIS Laurent. Absorptance measurement on Nb2O5 coating with lock-in thermography method[J]. Journal of Applied Optics, 2020, 41(3): 441-446. DOI: 10.5768/JAO202041.0301002
    [4]Gao Aihua, Wang Shaogang, Yan Lirong. Highprecision laser absorption rate measuring device[J]. Journal of Applied Optics, 2016, 37(2): 303-307. DOI: 10.5768/JAO201637.0207001
    [5]Liu hao, Pan feng, Wei Yao-wei, Ma ping, Zhang Zhe, Zhang Qing-hua, Wu Qian. Influence of defects in HfO2 film on absorptance and LIDT measurements[J]. Journal of Applied Optics, 2015, 36(2): 314-320. DOI: 10.5768/JAO201536.0207004
    [6]LIU Hao, PAN Feng, CHEN Song-lin, WANG Zhen, MA Ping, OUYANG Sheng, WEI Yao-wei. Measurement for bulk and surface absorptances of K9 substrates with laser calorimeter[J]. Journal of Applied Optics, 2014, 35(2): 292-296.
    [7]MA Hai-xia. Absorption efficiency of double-clad fiber based on Zemax[J]. Journal of Applied Optics, 2013, 34(1): 182-187.
    [8]WANG Yue, LIU Wei-guo, GAO Ai-hua, SUN Xin. System for testing transmissivity uniformity of high-absorption filter[J]. Journal of Applied Optics, 2010, 31(2): 256-260.
    [9]LI De-chuan, WANG Ming-jian, FANG Xiang-yun, LI Jian. Reverse saturable absorption property of organic material[J]. Journal of Applied Optics, 2009, 30(1): 172-176.
    [10]CHEN Jun, ZHANG Qun-li, YAO Jian-hua, FU Ji-bin. Study on laser absorptivity of metal material[J]. Journal of Applied Optics, 2008, 29(5): 793-798.

Catalog

    Article views (83) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return