Citation: | TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. DOI: 10.5768/JAO202344.0101002 |
To realize high-efficiency countermeasures and stealth for future remote terahertz radar, a wide-band terahertz absorbing structure with graphene was designed for typical operating frequencies of terahertz radar. The basic absorbing structure unit of wide-band absorbing structure was the surface metal layer/graphene layer/dielectric layer/bottom metal layer, and the dual-scale four separation layers were designed and optimized to certain the structure parameters of each layer using the genetic algorithm. Simulation results show that the absorption efficiency of wide-band absorbing structure is better than 80% in the frequency range of 0.138 THz~2 THz, 97.46% in the frequency range of 0.157 THz~2 THz, and 92.27% at the typical terahertz radar operating frequency, which satisfy the demands of countermeasures and stealth for terahertz radars.
[1] |
吕治辉, 张栋文, 赵增秀, 等. 太赫兹雷达技术研究[J]. 国防科技,2015,36(2):23-26.
LYU Zhihui, ZHANG Dongwen, ZHAO Zengxiu, et al. Research of terahertz radar technology[J]. National Defense Science and Technology,2015,36(2):23-26.
|
[2] |
董坤. 太赫兹雷达的特点及其应用[J]. 科技视界,2021(3):58-59.
DONG Kun. Characteristics and applications of terahertz radar[J]. Science & Technology Vision,2021(3):58-59.
|
[3] |
周智伟. 太赫兹技术发展综述[J]. 军民两用技术与产品,2020(1):40-44.
HOU Zhiwei. Overview of the development of terahertz technology[J]. Dual Use Technologies & Products,2020(1):40-44.
|
[4] |
武帅, 屈浩, 涂昊, 等. 太赫兹技术应用进展[J]. 电子技术应用,2019,45(7):3-18.
WU Shuai, QU Hao, TU Hao, et al. Progresses towards the application of terahertz technologies[J]. Terahertz Technology and Its Application,2019,45(7):3-18.
|
[5] |
张剑, 杨悦. 太赫兹技术在未来陆海空天的军事应用[J]. 舰船电子工程,2020,40(8):9-11.
ZHANG Jian, YANG Yue. Military application of terahertz technology in the future ground-air integrative battlefield[J]. Ship Electronic Engineering,2020,40(8):9-11.
|
[6] |
延凯悦, 冯毅, 马静艳, 等. 太赫兹应用分析和展望[J]. 邮电设计技术,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002
YAN Yuekai, FENG Yi, MA Jingyan, et al. Analysis and prospect of terahertz technology application[J]. Post and Telecommunications Design Technology,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002
|
[7] |
司黎明, 徐浩阳, 董琳, 等. 2020年太赫兹科学与技术热点回眸[J]. 科技导报,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017
SI Liming, XU Haoyang, DONG Lin, et al. Hot spots looking back of terahertz science and technology in 2020[J]. Technology Review,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017
|
[8] |
TAO H, BINGHAM C M, PILON D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D-Applied Physics,2010,43(22):225102. doi: 10.1088/0022-3727/43/22/225102
|
[9] |
WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters,2009,95(24):241111. doi: 10.1063/1.3276072
|
[10] |
MA Y, CHEN Q, GRANT J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters,2011,36(6):945-947. doi: 10.1364/OL.36.000945
|
[11] |
SHEN X P, CUI T J, ZHAO J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express,2011,19(10):9401-9407. doi: 10.1364/OE.19.009401
|
[12] |
SHEN X P, YANG Y, ZANG Y Z, et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation[J]. Applied Physics Letters,2012,101(15):154102. doi: 10.1063/1.4757879
|
[13] |
邹涛波. 基于超材料的太赫兹吸波体理论与工艺研究[D]. 桂林: 桂林电子科技大学, 2015.
ZOU Taobo. Research on the theory and process of metamaterial terahertz absorber[D]. Guilin: Guilin University of Electronic Technology, 2015.
|
[14] |
CUI Y X, XU J, FUNG K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters,2011,99(25):253101. doi: 10.1063/1.3672002
|
[15] |
CUI Y X, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters,2012,12(3):1443-1447. doi: 10.1021/nl204118h
|
[16] |
DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100(10):103506. doi: 10.1063/1.3692178
|
[17] |
顾钰, 王民, 蒲明博, 等. 基于石墨烯结合亚波长金属结构的太赫兹宽带动态吸收器[J]. 光电工程,2016,46(1):60-64.
GU Yu, WANG Min, PU Mingbo, et al. Tunable broadband absorber in terahertz regime based on graphene and metallic sub-wavelength structure[J]. Opto-Electronic Engineering,2016,46(1):60-64.
|
[18] |
XIAO D, ZHU M, WANG Q, et al. A flexible and ultra-broadband terahertz wave absorber based on graphenevertically aligned carbon nanotube hybrids[J]. Journal of Materials Chemistry C,2020,8(21):7244-7252. doi: 10.1039/D0TC01023E
|
[19] |
LIU W, SONG Z. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon,2020,174:617-624.
|
[20] |
ZHANG B L, LI Z X, HU Z D, et al. Analysis of a bidirectional metamaterial perfect absorber with band-switchability for multifunctional optical applications[J]. Results in Physics,2022,34:105313. doi: 10.1016/j.rinp.2022.105313
|
[21] |
BAO Z Y, WANG J C, HU Z D, et al. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multi-layer film structures[J]. Journal of Physics D:Applied Physics,2021,54(5):505306.
|
[22] |
BAO Z Y, WANG J C, HU Z D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express,2019,27(22):31435-31445. doi: 10.1364/OE.27.031435
|
[23] |
WANG J C, WANG X S, SHAO H Y, et al. Peak modulation in multicavity-coupled graphene-based waveguide system[J]. Nanoscale Research Letter,2017,12:1-7. doi: 10.1186/s11671-016-1773-2
|
[24] |
冯睿. 红外波段周期微结构近完美吸收特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
FENG Rui. Study on nearly perfect absorption of infrared periodic microstructure[D]. Harbin: Harbin Institute of Technology, 2015.
|
[25] |
苟杨九州, 彭晓昱. 太赫兹快速成像技术研究进展[J]. 重庆邮电大学学报(自然科学版),2021,33(2):216-229.
GOU Yanjiuzhou, PENG Xiaoyu. Research progress of terahertz rapid imaging[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2021,33(2):216-229.
|
[26] |
张玉平, 唐利斌, 刘玉菲, 等. 太赫兹新型探测器的研究进展及应用[J]. 红外与毫米波学报,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007
ZHANG Yuping, TANG Libin, LIU Yufei, et al. The research progress and application of novel terahertz detectors[J]. J. Infrared Millim. Waves,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007
|
[27] |
罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学:物理学力学天文学,2021,51:054202. doi: 10.1360/SSPMA-2020-0255
LUO Chenggao, LIU Kang, WANG Hongqiang, et al. Terahertz single-photon radar detection technology[J]. Sci Sin-Phys Mech Astron,2021,51:054202. doi: 10.1360/SSPMA-2020-0255
|
[28] |
石粒力, 吴敬波, 涂学凑, 等. 太赫兹单光子探测器[J]. 中国科学:物理学力学天文学,2021,51:054203. doi: 10.1360/SSPMA-2020-0274
SHI Libo, WU Jingbo, TU Xuecou, et al. Terahertz single photon detectors[J]. Sci Sin-Phys Mech Astron,2021,51:054203. doi: 10.1360/SSPMA-2020-0274
|
[29] |
罗成高, 邓彬, 程永强, 等. 精确制导前沿成像探测技术[J]. 国防科技大学学报,2019,41(5):174-184. doi: 10.11887/j.cn.201905025
LUO Chenggao, DENG Bin, CHENG Yongqiang, et al. Advanced imaging and detecting technology for precision guidance[J]. Journal of National University of Defense Technology,2019,41(5):174-184. doi: 10.11887/j.cn.201905025
|
[30] |
杨玉平, 杨一宏, GRISCHKOWSKY D R. 宽带太赫兹波在大气中的远程探测研究及展望[J]. 物理,2013,42(10):712-719.
YANG Yuping, YANG Yihong, GRISCHKOWSKY D R. Broadband long-path THz pulse transmission through the atmosphere[J]. Physics,2013,42(10):712-719.
|
[31] |
王玉文, 李瀚宇, 董志伟. 0.1 THz-1 THz频段太赫兹波在云雾中传输的衰减特性[J]. 微波学报,2014(6):560-563.
WANG Yuwen, LI Hanyu, DONG Zhiwei. The attenuation characteristics of 0.01 THz-1 THz band terahertz wave transmitted in the clouds[J]. Journal of Microwave Science,2014(6):560-563.
|
[32] |
王蓉蓉. 大气水凝物中THz波和红外波的辐射传输特性[D]. 西安: 西安电子科技大学, 2014.
WANG Rongrong. Radiation and transmission characteristics of THz and infrared waves by atmospheric hydrometeors[D]. Xian: Xidian University, 2014.
|
[33] |
盛楠, 廖成, 张青洪, 等. 太赫兹波大气衰减的抛物方程模型[J]. 太赫兹科学与电子信息学报,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175
SHENG Nan, LIAO Cheng, ZHANG Qinghong, et al. Parabolic equation model for calculating atmospheric attenuation of THz wave[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175
|
[34] |
房艳燕, 王玉文, 董志伟, 等. 太赫兹波大气分层传输特性[J]. 太赫兹科学与电子信息学报,2016,14(1):1-6.
FANG Yanyan, WANG Yuwen, DONG Zhiwei, et al. Atmospheric attenuation characteristics of THz layered propagation[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(1):1-6.
|
[1] | SUN Shaobin, XU Junqi, SU Junhong, LI Yang, WANG Tong, LIU Zheng. Influence of PEG content on optical band gap and laser damage characteristics of porous films[J]. Journal of Applied Optics, 2024, 45(4): 841-848. DOI: 10.5768/JAO202445.0407002 |
[2] | YUAN Shihao, XU Junqi, SU Junhong, LU Jiaxi, REN Sen. Review of preparation methods of laser films with high damage threshold[J]. Journal of Applied Optics, 2023, 44(6): 1185-1194. DOI: 10.5768/JAO202344.0610004 |
[3] | WANG Yan, HANG Lingxia. Relationship between gradient of antireflection film and laser induced damage threshold[J]. Journal of Applied Optics, 2019, 40(1): 143-149. DOI: 10.5768/JAO201940.0107003 |
[4] | Hang Liang-yi, Xu Jun-qi, Cheng Yao-jin, Su Jun-hong. Preparation of LaTiO3 films and process optimization[J]. Journal of Applied Optics, 2015, 36(6): 948-954. DOI: 10.5768/JAO201536.0604003 |
[5] | Li Peng, Hang Ling-xia, Xu Jun-qi, Li Lin-jun. Laser-induced damage resist properties of monolayer optical thin films prepared by PECVD technology[J]. Journal of Applied Optics, 2015, 36(2): 206-213. DOI: 10.5768/JAO201536.0201008 |
[6] | HAN Wen-qin, GUO Xi-qing, XIE Guan-bao, SUN Peng-fei, YANG Jing-xian, TANG Ya-jun. Pulse laser damage characteristic measurement of VO2 optical thin film[J]. Journal of Applied Optics, 2013, 34(4): 690-694. |
[7] | OUYANG Sheng, LIU Zhi-chao, XU Qiao. Surface damage precursors in triple-frequency fused silica[J]. Journal of Applied Optics, 2011, 32(6): 1257-1262. |
[8] | LIU Zhi-chao, WEI Yao-wei, CHEN Song-lin, MA Ping. Characterization of 1 064 nm laser induced damagein ALD optical film[J]. Journal of Applied Optics, 2011, 32(2): 373-376. |
[9] | LI Qian, HANG Ling-xia, XU Jun-qi. Ellipsometric analysis of optical constants for diamond-like carbon films deposited by UBMS[J]. Journal of Applied Optics, 2009, 30(1): 105-109. |
[10] | LOU Jun, SU Jun-hong, XU Jun-qi, XIE Song-lin. Laser-induced damage threshold detection for optical thin films by scattered light of He-Ne laser[J]. Journal of Applied Optics, 2008, 29(1): 131-135. |