TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. DOI: 10.5768/JAO202344.0101002
Citation: TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. DOI: 10.5768/JAO202344.0101002

Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization

More Information
  • Received Date: April 21, 2022
  • Revised Date: June 27, 2022
  • Available Online: September 23, 2022
  • To realize high-efficiency countermeasures and stealth for future remote terahertz radar, a wide-band terahertz absorbing structure with graphene was designed for typical operating frequencies of terahertz radar. The basic absorbing structure unit of wide-band absorbing structure was the surface metal layer/graphene layer/dielectric layer/bottom metal layer, and the dual-scale four separation layers were designed and optimized to certain the structure parameters of each layer using the genetic algorithm. Simulation results show that the absorption efficiency of wide-band absorbing structure is better than 80% in the frequency range of 0.138 THz~2 THz, 97.46% in the frequency range of 0.157 THz~2 THz, and 92.27% at the typical terahertz radar operating frequency, which satisfy the demands of countermeasures and stealth for terahertz radars.

  • [1]
    吕治辉, 张栋文, 赵增秀, 等. 太赫兹雷达技术研究[J]. 国防科技,2015,36(2):23-26.

    LYU Zhihui, ZHANG Dongwen, ZHAO Zengxiu, et al. Research of terahertz radar technology[J]. National Defense Science and Technology,2015,36(2):23-26.
    [2]
    董坤. 太赫兹雷达的特点及其应用[J]. 科技视界,2021(3):58-59.

    DONG Kun. Characteristics and applications of terahertz radar[J]. Science & Technology Vision,2021(3):58-59.
    [3]
    周智伟. 太赫兹技术发展综述[J]. 军民两用技术与产品,2020(1):40-44.

    HOU Zhiwei. Overview of the development of terahertz technology[J]. Dual Use Technologies & Products,2020(1):40-44.
    [4]
    武帅, 屈浩, 涂昊, 等. 太赫兹技术应用进展[J]. 电子技术应用,2019,45(7):3-18.

    WU Shuai, QU Hao, TU Hao, et al. Progresses towards the application of terahertz technologies[J]. Terahertz Technology and Its Application,2019,45(7):3-18.
    [5]
    张剑, 杨悦. 太赫兹技术在未来陆海空天的军事应用[J]. 舰船电子工程,2020,40(8):9-11.

    ZHANG Jian, YANG Yue. Military application of terahertz technology in the future ground-air integrative battlefield[J]. Ship Electronic Engineering,2020,40(8):9-11.
    [6]
    延凯悦, 冯毅, 马静艳, 等. 太赫兹应用分析和展望[J]. 邮电设计技术,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002

    YAN Yuekai, FENG Yi, MA Jingyan, et al. Analysis and prospect of terahertz technology application[J]. Post and Telecommunications Design Technology,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002
    [7]
    司黎明, 徐浩阳, 董琳, 等. 2020年太赫兹科学与技术热点回眸[J]. 科技导报,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017

    SI Liming, XU Haoyang, DONG Lin, et al. Hot spots looking back of terahertz science and technology in 2020[J]. Technology Review,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017
    [8]
    TAO H, BINGHAM C M, PILON D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D-Applied Physics,2010,43(22):225102. doi: 10.1088/0022-3727/43/22/225102
    [9]
    WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters,2009,95(24):241111. doi: 10.1063/1.3276072
    [10]
    MA Y, CHEN Q, GRANT J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters,2011,36(6):945-947. doi: 10.1364/OL.36.000945
    [11]
    SHEN X P, CUI T J, ZHAO J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express,2011,19(10):9401-9407. doi: 10.1364/OE.19.009401
    [12]
    SHEN X P, YANG Y, ZANG Y Z, et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation[J]. Applied Physics Letters,2012,101(15):154102. doi: 10.1063/1.4757879
    [13]
    邹涛波. 基于超材料的太赫兹吸波体理论与工艺研究[D]. 桂林: 桂林电子科技大学, 2015.

    ZOU Taobo. Research on the theory and process of metamaterial terahertz absorber[D]. Guilin: Guilin University of Electronic Technology, 2015.
    [14]
    CUI Y X, XU J, FUNG K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters,2011,99(25):253101. doi: 10.1063/1.3672002
    [15]
    CUI Y X, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters,2012,12(3):1443-1447. doi: 10.1021/nl204118h
    [16]
    DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100(10):103506. doi: 10.1063/1.3692178
    [17]
    顾钰, 王民, 蒲明博, 等. 基于石墨烯结合亚波长金属结构的太赫兹宽带动态吸收器[J]. 光电工程,2016,46(1):60-64.

    GU Yu, WANG Min, PU Mingbo, et al. Tunable broadband absorber in terahertz regime based on graphene and metallic sub-wavelength structure[J]. Opto-Electronic Engineering,2016,46(1):60-64.
    [18]
    XIAO D, ZHU M, WANG Q, et al. A flexible and ultra-broadband terahertz wave absorber based on graphenevertically aligned carbon nanotube hybrids[J]. Journal of Materials Chemistry C,2020,8(21):7244-7252. doi: 10.1039/D0TC01023E
    [19]
    LIU W, SONG Z. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon,2020,174:617-624.
    [20]
    ZHANG B L, LI Z X, HU Z D, et al. Analysis of a bidirectional metamaterial perfect absorber with band-switchability for multifunctional optical applications[J]. Results in Physics,2022,34:105313. doi: 10.1016/j.rinp.2022.105313
    [21]
    BAO Z Y, WANG J C, HU Z D, et al. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multi-layer film structures[J]. Journal of Physics D:Applied Physics,2021,54(5):505306.
    [22]
    BAO Z Y, WANG J C, HU Z D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express,2019,27(22):31435-31445. doi: 10.1364/OE.27.031435
    [23]
    WANG J C, WANG X S, SHAO H Y, et al. Peak modulation in multicavity-coupled graphene-based waveguide system[J]. Nanoscale Research Letter,2017,12:1-7. doi: 10.1186/s11671-016-1773-2
    [24]
    冯睿. 红外波段周期微结构近完美吸收特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    FENG Rui. Study on nearly perfect absorption of infrared periodic microstructure[D]. Harbin: Harbin Institute of Technology, 2015.
    [25]
    苟杨九州, 彭晓昱. 太赫兹快速成像技术研究进展[J]. 重庆邮电大学学报(自然科学版),2021,33(2):216-229.

    GOU Yanjiuzhou, PENG Xiaoyu. Research progress of terahertz rapid imaging[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2021,33(2):216-229.
    [26]
    张玉平, 唐利斌, 刘玉菲, 等. 太赫兹新型探测器的研究进展及应用[J]. 红外与毫米波学报,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007

    ZHANG Yuping, TANG Libin, LIU Yufei, et al. The research progress and application of novel terahertz detectors[J]. J. Infrared Millim. Waves,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007
    [27]
    罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学:物理学力学天文学,2021,51:054202. doi: 10.1360/SSPMA-2020-0255

    LUO Chenggao, LIU Kang, WANG Hongqiang, et al. Terahertz single-photon radar detection technology[J]. Sci Sin-Phys Mech Astron,2021,51:054202. doi: 10.1360/SSPMA-2020-0255
    [28]
    石粒力, 吴敬波, 涂学凑, 等. 太赫兹单光子探测器[J]. 中国科学:物理学力学天文学,2021,51:054203. doi: 10.1360/SSPMA-2020-0274

    SHI Libo, WU Jingbo, TU Xuecou, et al. Terahertz single photon detectors[J]. Sci Sin-Phys Mech Astron,2021,51:054203. doi: 10.1360/SSPMA-2020-0274
    [29]
    罗成高, 邓彬, 程永强, 等. 精确制导前沿成像探测技术[J]. 国防科技大学学报,2019,41(5):174-184. doi: 10.11887/j.cn.201905025

    LUO Chenggao, DENG Bin, CHENG Yongqiang, et al. Advanced imaging and detecting technology for precision guidance[J]. Journal of National University of Defense Technology,2019,41(5):174-184. doi: 10.11887/j.cn.201905025
    [30]
    杨玉平, 杨一宏, GRISCHKOWSKY D R. 宽带太赫兹波在大气中的远程探测研究及展望[J]. 物理,2013,42(10):712-719.

    YANG Yuping, YANG Yihong, GRISCHKOWSKY D R. Broadband long-path THz pulse transmission through the atmosphere[J]. Physics,2013,42(10):712-719.
    [31]
    王玉文, 李瀚宇, 董志伟. 0.1 THz-1 THz频段太赫兹波在云雾中传输的衰减特性[J]. 微波学报,2014(6):560-563.

    WANG Yuwen, LI Hanyu, DONG Zhiwei. The attenuation characteristics of 0.01 THz-1 THz band terahertz wave transmitted in the clouds[J]. Journal of Microwave Science,2014(6):560-563.
    [32]
    王蓉蓉. 大气水凝物中THz波和红外波的辐射传输特性[D]. 西安: 西安电子科技大学, 2014.

    WANG Rongrong. Radiation and transmission characteristics of THz and infrared waves by atmospheric hydrometeors[D]. Xian: Xidian University, 2014.
    [33]
    盛楠, 廖成, 张青洪, 等. 太赫兹波大气衰减的抛物方程模型[J]. 太赫兹科学与电子信息学报,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175

    SHENG Nan, LIAO Cheng, ZHANG Qinghong, et al. Parabolic equation model for calculating atmospheric attenuation of THz wave[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175
    [34]
    房艳燕, 王玉文, 董志伟, 等. 太赫兹波大气分层传输特性[J]. 太赫兹科学与电子信息学报,2016,14(1):1-6.

    FANG Yanyan, WANG Yuwen, DONG Zhiwei, et al. Atmospheric attenuation characteristics of THz layered propagation[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(1):1-6.
  • Related Articles

    [1]SUN Shaobin, XU Junqi, SU Junhong, LI Yang, WANG Tong, LIU Zheng. Influence of PEG content on optical band gap and laser damage characteristics of porous films[J]. Journal of Applied Optics, 2024, 45(4): 841-848. DOI: 10.5768/JAO202445.0407002
    [2]YUAN Shihao, XU Junqi, SU Junhong, LU Jiaxi, REN Sen. Review of preparation methods of laser films with high damage threshold[J]. Journal of Applied Optics, 2023, 44(6): 1185-1194. DOI: 10.5768/JAO202344.0610004
    [3]WANG Yan, HANG Lingxia. Relationship between gradient of antireflection film and laser induced damage threshold[J]. Journal of Applied Optics, 2019, 40(1): 143-149. DOI: 10.5768/JAO201940.0107003
    [4]Hang Liang-yi, Xu Jun-qi, Cheng Yao-jin, Su Jun-hong. Preparation of LaTiO3 films and process optimization[J]. Journal of Applied Optics, 2015, 36(6): 948-954. DOI: 10.5768/JAO201536.0604003
    [5]Li Peng, Hang Ling-xia, Xu Jun-qi, Li Lin-jun. Laser-induced damage resist properties of monolayer optical thin films prepared by PECVD technology[J]. Journal of Applied Optics, 2015, 36(2): 206-213. DOI: 10.5768/JAO201536.0201008
    [6]HAN Wen-qin, GUO Xi-qing, XIE Guan-bao, SUN Peng-fei, YANG Jing-xian, TANG Ya-jun. Pulse laser damage characteristic measurement of VO2 optical thin film[J]. Journal of Applied Optics, 2013, 34(4): 690-694.
    [7]OUYANG Sheng, LIU Zhi-chao, XU Qiao. Surface damage precursors in triple-frequency fused silica[J]. Journal of Applied Optics, 2011, 32(6): 1257-1262.
    [8]LIU Zhi-chao, WEI Yao-wei, CHEN Song-lin, MA Ping. Characterization of 1 064 nm laser induced damagein ALD optical film[J]. Journal of Applied Optics, 2011, 32(2): 373-376.
    [9]LI Qian, HANG Ling-xia, XU Jun-qi. Ellipsometric analysis of optical constants for diamond-like carbon films deposited by UBMS[J]. Journal of Applied Optics, 2009, 30(1): 105-109.
    [10]LOU Jun, SU Jun-hong, XU Jun-qi, XIE Song-lin. Laser-induced damage threshold detection for optical thin films by scattered light of He-Ne laser[J]. Journal of Applied Optics, 2008, 29(1): 131-135.
  • Cited by

    Periodical cited type(8)

    1. 郭栋,张树玲,甘志颖,郭峰. 类金刚石薄膜膜基结合强度优化技术研究进展. 宁夏工程技术. 2022(01): 84-91 .
    2. 张旺玺. 化学气相沉积法合成金刚石的研究进展. 陶瓷学报. 2021(04): 537-546 .
    3. 李党娟,王娜,吴慎将,苏俊宏. 不同工艺参数下DLC薄膜的应力状态. 真空科学与技术学报. 2020(05): 421-426 .
    4. 胡志方. 简述金刚石人工合成进展. 冶金与材料. 2020(03): 142+145 .
    5. 黄彪,张而耕,周琼,陈永康. 石墨靶溅射时间对Ta-C涂层性能的影响. 陶瓷学报. 2019(03): 318-324 .
    6. 丁雪兴,赵海红,金海俊,魏龙,金良. 干气密封两种典型螺旋角与DLC薄膜的摩擦性能. 石油化工高等学校学报. 2018(04): 82-89 .
    7. 张而耕,黄彪,何澄,周琼. 新型Ta-C涂层铣刀切削性能研究. 表面技术. 2017(06): 125-130 .
    8. 董中林,于振华,施毅,李琦,杨木,王永庆,干蜀毅. 脉冲偏压对磁过滤阴极电弧离子镀ta-C薄膜性能的影响. 真空科学与技术学报. 2017(01): 78-82 .

    Other cited types(22)

Catalog

    Article views (399) PDF downloads (40) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return