Citation: | ZHA Guangping, WU Haoyu, LI Jianjun, YUAN Yinlin. Angular uniformity of cascaded integrating sphere radiation source[J]. Journal of Applied Optics, 2022, 43(3): 481-487. DOI: 10.5768/JAO202243.0303003 |
In order to design and manufacture integrating sphere radiation sources with high angular uniformity, it is necessary to provide optimized design parameters. Based on the radiative transfer theory of cavity, a simulation model of light exitance distribution of light-emitting unit based on cascaded integrating sphere structure was established, and the relationship between the installation position of the Lambertian light-emitting unit and the angular uniformity of the cascaded integrating sphere radiation source was obtained. The simulation results showed that, in ideal conditions, when two Lambertian cascaded sub-spheres were used as light-emitting units and were symmetrically installed at an angle of 10° with the normal direction of the light outlet of the cascaded integrating sphere radiation source, the angular uniformity in the observation area at an angle of ±20° between the center of the sphere and the normal direction of the light outlet could reach the level of 0.03%. Finally, the angular uniformity of the cascaded integrating sphere radiation source at the 30° angle position of the cascaded sub-spheres was measured experimentally, and the experimental results were close to the simulation results. Therefore, by optimizing the type and installation position of the light-emitting unit, the angular uniformity of the integrating sphere radiation source could be effectively improved.
[1] |
PROKHOROV A V, MEKHONTSEV S N, HANSSEN L M. Monte Carlo modeling of an integrating sphere reflectometer[J]. Applied Optics,2003,42(19):3832-3842. doi: 10.1364/AO.42.003832
|
[2] |
汪择宏, 王景新. 高均匀性大孔径积分球光源结构优化及验证[J]. 科技创新与应用,2018(31):20-22. doi: 10.3969/j.issn.2095-2945.2018.31.008
WANG Zehong, WANG Jingxin. Structural optimization and verification of the integrating sphere light source with high uniformity and large aperture[J]. Technology Innovation and Application,2018(31):20-22. doi: 10.3969/j.issn.2095-2945.2018.31.008
|
[3] |
张梦雅, 袁银麟, 翟文超, 等. 宽动态范围红外积分球辐射源的设计与检测[J]. 光学学报,2019,39(6):180-189.
ZHANG Mengya, YUAN Yinlin, ZHAI Wenchao, et al. Design and test of infrared integrating sphere radiation source with wide dynamic range[J]. Acta Optica Sinica,2019,39(6):180-189.
|
[4] |
LIU L Y, ZHENG F, ZHU L X, et al. Luminance uniformity of integrating sphere light source[C]//2015 International Conference on Optoelectronics and Microelectronics (ICOM), China: IEEE, 2015: 265-268.
|
[5] |
叶钊, 任建伟, 李葆勇, 等. 大口径积分球辐射定标光源辐射性能研究[J]. 宇航计测技术,2012,32(3):39-44. doi: 10.3969/j.issn.1000-7202.2012.03.010
YE Zhao, REN Jianwei, LI Baoyong, et al. The radiation testing research of radiometric calibration source of the large aperture integrating sphere[J]. Journal of Astronautic Metrology and Measurement,2012,32(3):39-44. doi: 10.3969/j.issn.1000-7202.2012.03.010
|
[6] |
CARIOU N, DURELL C, MCKEE G, et al. Effects of Lambertian sources design on uniformity and measurements[C]//SPIE Proceedings of Sensors, Systems and Next-Generation Satellites XVIII, Netherlands: SPIE, 2014: 9241.
|
[7] |
曾瑞敏, 王阳, 唐泽恬, 等. 一种环形屏积分球光源的辐照均匀度研究[J]. 应用光学,2019,40(4):632-637. doi: 10.5768/JAO201940.0403001
ZENG Ruimin, WANG Yang, TANG Zetian, et al. Research on radiation uniformity of annular baffle integrating sphere light source[J]. Journal of Applied Optics,2019,40(4):632-637. doi: 10.5768/JAO201940.0403001
|
[8] |
HE Y W, LI P, FENG G J, et al. Computer modeling of a large-area integrating sphere uniform radiation source for calibration of satellite remote sensors[J]. Optik,2011,122(13):1143-1145. doi: 10.1016/j.ijleo.2010.07.014
|
[9] |
HANSSEN L M. Effects of non-Lambertian surfaces on integrating sphere measurements[J]. Applied Optics,1996,35(19):3597-3606. doi: 10.1364/AO.35.003597
|
[10] |
赫英威, 李平, 吴厚平, 等. 积分球辐射光源照度均匀性研究[J]. 应用光学,2012,33(3):548-553.
HE Yingwei, LI Ping, WU Houping, et al. Output irradiance uniformity of integrating sphere source[J]. Journal of Applied Optics,2012,33(3):548-553.
|
[11] |
袁银麟, 郑小兵, 吴浩宇, 等. 大口径积分球参考光源的均匀性研究[J]. 光子学报,2015,44(4):160-166.
YUAN Yinlin, ZHENG Xiaobing, WU Haoyu, et al. Uniformity research of integrating spheres reference light source with large exit aperture[J]. Acta Photonica Sinica,2015,44(4):160-166.
|
[12] |
刘洪兴, 任建伟, 李宪圣, 等. 基于LightTools的大口径积分球辐射特性仿真[J]. 红外与激光工程,2013,42(4):960-965. doi: 10.3969/j.issn.1007-2276.2013.04.023
LIU Hongxing, REN Jianwei, LI Xiansheng, et al. Radiometric characteristics simulation of large aperture integrating sphere based on LightTools[J]. Infrared and Laser Engineering,2013,42(4):960-965. doi: 10.3969/j.issn.1007-2276.2013.04.023
|
[13] |
WASAPINYOKUL K, LEECHAROEN R, CHANYAWADEE S, et al. Effects of integrating sphere conditions on the sphere uniformity[C]//SPIE Proceedings & International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013), Singapore: SPIE, 2013, 8769: 158-164.
|
[14] |
张钊, 李宪圣, 万志, 等. 超大口径均匀光源辐射性能设计与测试[J]. 中国激光,2017,44(4):234-245.
ZHANG Zhao, LI Xiansheng, WAN Zhi, et al. Design and measurement of radiometric performance of ultra-large aperture uniform light source[J]. Chinese Journal of Lasers,2017,44(4):234-245.
|
[15] |
CARR K. Integrating sphere theory and applications Part I: integrating sphere theory and design[J]. Surface Coatings International,1997,80(8):380-385. doi: 10.1007/BF02692694
|
[1] | HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004 |
[2] | LIU Hao, ZHAO Tianqi, ZHAN Chunlian, ZOU Yanxia, JIN Shangzhong. Testing technology of vacuum ultraviolet spectral radiance[J]. Journal of Applied Optics, 2022, 43(6): 1138-1144. DOI: 10.5768/JAO202243.0604013 |
[3] | HE Shufang, WANG Yanfei, DAI Caihong, LIU Jinyuan, FENG Guojin. Research of temperature uniformity and size-of-source effect in infrared spectral radiance measurement[J]. Journal of Applied Optics, 2020, 41(4): 737-742. DOI: 10.5768/JAO202041.0406003 |
[4] | HANG Sijia, XIA Maopeng, LI Jianjun, ZHENG Xiaobing, LEI Zhenggang. Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment[J]. Journal of Applied Optics, 2019, 40(6): 1103-1108. DOI: 10.5768/JAO201940.0603004 |
[5] | LIU Wei-feng, XIE Yong-jie, ZHAO Le-zhi. Measurement and research on sky background radiance luminance[J]. Journal of Applied Optics, 2012, 33(2): 351-354. |
[6] | LI Xu-yang, LI Ying-cai, MA Zhen, YI Hong-wei. Computer-aided alignment method of coaxialthree-mirror-anastigmat system[J]. Journal of Applied Optics, 2009, 30(6): 901-906. |
[7] | JIANG Fei-hong. Infrared radiative transfer model of pollution cloud and computer simulation of infrared spectra[J]. Journal of Applied Optics, 2009, 30(4): 688-691. |
[8] | YAN Hong-rui, MA Li-ju. Application of virtual reality technology in computer simulation[J]. Journal of Applied Optics, 2008, 29(supp): 127-129. |
[9] | SHEN Hua, HE Yong, ZHU Ri-hong. Computer simulation of optical engine for LCD projector[J]. Journal of Applied Optics, 2007, 28(2): 181-186. |
[10] | ZHAN Chun-lian, LIU Jian-ping, LI Zheng-qi, LU Fei, CHEN Chao. Research on measurement of spectral radiance luminance base on hightemperature blackbody[J]. Journal of Applied Optics, 2006, 27(supp): 71-75. |
1. |
杨潇,孙帮勇. 双头增强与非均匀校正的水下图像增强算法. 应用光学. 2024(02): 354-364 .
![]() | |
2. |
朱海荣,蔡鹏,张春磊,张晨阳,陈新东. 海水环境光场水下辐照度测量光学设计. 兵器装备工程学报. 2024(11): 298-303 .
![]() |