HANG Sijia, XIA Maopeng, LI Jianjun, ZHENG Xiaobing, LEI Zhenggang. Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment[J]. Journal of Applied Optics, 2019, 40(6): 1103-1108. DOI: 10.5768/JAO201940.0603004
Citation: HANG Sijia, XIA Maopeng, LI Jianjun, ZHENG Xiaobing, LEI Zhenggang. Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment[J]. Journal of Applied Optics, 2019, 40(6): 1103-1108. DOI: 10.5768/JAO201940.0603004

Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment

More Information
  • Received Date: June 24, 2019
  • Revised Date: September 23, 2019
  • The equivalent noise radiance (NESR) of infrared Fourier spectrometer is not only a reflection of its ultimate detection ability to infrared target signal, but also a core technical index of instrument. Limited by the current technical conditions in China, there is no relevant capability of calibration system testing and specification verification yet. Based on the standard transmission method of infrared radiation metering devices at home and abroad, a scheme of NESR high-precision testing device was proposed. The traceability chain of this device was put forward, its overall structure and optical path were also described, while a suppression system with low-temperature and vacuum background was designed. This designing scheme of radiation source on infrared integrating sphere with wide dynamic range, equivalent optical path and vacuum cryogenic environment were introduced in detail. The proposed technical solution provides a basic reference for NESR high-precision measurement, which also supports the condition of NESR quantity traceability for Fourier spectrometer in China.
  • [1]
    ASMUS V V, TIMOFEYEV Y M, POLYAKOV A V, et al. Atmospheric temperature sounding with the fourier spectrometer[J]. Izvestiya Atmospheric & Oceanic Physics, 2017, 53(4):428-432. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b51a0ee9434946bb374c3fc0ab8e164a
    [2]
    FRANK T G, NATASHA M J, JOSEPH A N. On the use of fourier transform infrared (FT-IR) spectroscopy and synthetic calibration spectra to quantify gas concentrations in a fischer-tropsch catalyst system[J]. Applied Spectroscopy, 2015, 69(10): 1157-1169. doi: 10.1366/15-07950
    [3]
    HONNIBALL C I, CASEY I R, WRIGHT, et al. MWIR hyperspectral imaging with the MIDAS instrument[J]. Proc. of SPIE, 2017, 10177:101770J1-8. http://www.researchgate.net/publication/316870652_MWIR_hyperspectral_imaging_with_the_MIDAS_instrument
    [4]
    WURST N P, JOSEPH M D, PERRY L. Measurement and modeling of longwave infrared directional downwelling spectral radiance[J]. Proc. of SPIE, 2015, 9611:96110X1-8. doi: 10.1117/12.2186557
    [5]
    SILNY J F, ZELLINGER L. Radiometric sensitivity contrast metrics for spectral remote sensors[J]. Optical Engineering, 2017, 56(8):081807. doi: 10.1117/1.OE.56.8.081807
    [6]
    MANNING C, GROSS M, SAMUELS A NESR. Characterization of a novel interferometer[J]. Fourier Transform Spectroscopy, 2003, 3(1): 114-116.
    [7]
    郑小兵.发展光学遥感卫星辐射定标技术的几点思考[J].大气与环境光学学报, 2014, 9(1):2-8. http://d.old.wanfangdata.com.cn/Periodical/dqyhjgxxb201401001

    ZHENG Xiaobing. Some respects for development of radiometric calibration techniques for optical remote sensing satellites[J]. Journal of Atmospheric and Environmental Optics, 2014, 9(1):2-8. http://d.old.wanfangdata.com.cn/Periodical/dqyhjgxxb201401001
    [8]
    MEKHONSEV S, KHROMECHENKO V, PROKHOROV A. et al. Establishing a new NIST facility for the primary realization of both spectral radiance and reflectance in the mid-and far-infrared[C]//American Geophysical Union, Fall Meeting 2009, GC43A-0793.USA: [s.n.], 2009.
    [9]
    MONTE C, GUTSCHWAGER B, MOROZOVA S P, et al. Radiation thermometry and emissivity measurements under vacuum at the PTB[J]. International Journal of Thermophysics, 2009, 30(1):203-219. doi: 10.1007/s10765-008-0442-9
    [10]
    MONTE C, GUTSCHWAGER B, ADIBEKYAN A, et al. Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer[J]. Atmospheric Measurement Techniques, 2014, 7:13-27. doi: 10.5194/amt-7-13-2014
    [11]
    IVANOV V S, LISIANSKY B E, MOROZOVA S P, et al. Medium-background radiometric facility for calibration of sources or sensors[J]. Metrologia, 2000, 37(5):599-602602. doi: 10.1088/0026-1394/37/5/58
    [12]
    郝小鹏, 宋健, 孙建平, 等.风云卫星的红外遥感亮度温度国家计量标准装置[J].光学精密工程, 2015, 23(7): 1845-1851. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201507006

    HAO Xiaopeng, SONG Jian, Sun Jianping, et al. Vacuum radiance temperature national standard facility for infrared remote sensors of Chinese fengyun meteorological satellites[J]. Optics and Precision Engineering, 2015, 23(7): 1845-1851. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201507006
    [13]
    RENTZ J H, EEGEL J R. Passive spectro-radiometer calibration: radiance responsivity, sensitivity, and radiation reference[J]. Fourier Transform Spectroscopy, 199913(1):117-119. doi: 10.1364/FTS.1999.FWE13
    [14]
    LI Xunniu, ZHENG Weijian, LEI Zhenggang, et al. Analysis for signal-to-noise ratio of hyper-spectral imaging FTIR interferometer[J]. Proc. of SPIE, 2013, 8910:89101P1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214244449
    [15]
    郑为健, 金伟其, 苏君红.远距离被动红外遥测系统的噪声等效辐射通量密度[J].红外技术, 2007, 29(9): 512-514. doi: 10.3969/j.issn.1001-8891.2007.09.005

    ZHENG Weijian, JIN Weiqi, SU Junhong. NESR of long-distance passive infrared telemetering systems[J]. Infrared Technology, 2007, 29(9):512-514. doi: 10.3969/j.issn.1001-8891.2007.09.005
    [16]
    袁银麟, 郑小兵, 吴浩宇, 等.大口径积分球参考光源的均匀性研究[J].光子学报, 2015, 44(4): 0422003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201504027

    YUAN Yinlin, ZHENG Xiaobing, WU Haoyu, et al. Uniformity research of integrating spheres reference light source with large exit aperture[J]. Acta Photonica Sinica, 2015, 44(4): 0422003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201504027
    [17]
    张梦雅, 袁银麟, 翟文超, 等.宽动态范围红外积分球辐射源的设计与检测[J].光学学报, 2019, 39(6): 0612006. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201906022

    ZHANG Mengya, YUAN Yinlin, ZHAI Wenchao, et al. Design and test of infrared integrating sphere radiation source with wide dynamic range[J]. Acta Optica Sinica, 2019, 39(6): 0612006. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201906022
  • Related Articles

    [1]GU Shuangling, ZHANG Feng, PENG Xia, ZHAO Li. Virtual time reversal method for channel equalization in non-orthogonal multiple access optical communication systems[J]. Journal of Applied Optics, 2024, 45(2): 475-484. DOI: 10.5768/JAO202445.0208005
    [2]YANG Borui, ZHAO Li, LU Ying, ZHOU Yu. Research on MIMO channel capacity for adaptive power allocation visible light[J]. Journal of Applied Optics, 2020, 41(3): 626-630. DOI: 10.5768/JAO202041.0308002
    [3]Wu Shenghan, Wang Zheng, Cao Liangcai, Zhang Hao, Jin Guofan. Volume holographic display technology based on angular multiplexing[J]. Journal of Applied Optics, 2017, 38(2): 215-220. DOI: 10.5768/JAO201738.0202002
    [4]Su Yuwei, Bi Mingzhe, Liu Peng, Zhang Yan, Feng Xianglian, Wu Zhihang, Li Xiaoyan, Zhang Peng, Wang Tianshu, Wang Jian, Wu Qi, Wang Xiaoting. 20 Gbit/s atmospheric laser communication based on dense wavelength division multiplexing[J]. Journal of Applied Optics, 2017, 38(1): 136-139. DOI: 10.5768/JAO201738.0107004
    [5]LIU Yu, FANG Qiang, JIN Xin-yu. Channel characteristics of stimulated Raman scattering with dispersion effect in optical fiber communication system[J]. Journal of Applied Optics, 2007, 28(5): 608-613.
    [6]LI Rui, ZHAO Hong-li, ZENG De-xian. Freespace laser communication and its key technology[J]. Journal of Applied Optics, 2006, 27(2): 152-154.
    [7]KUANG Zi-li. Research of the design method and some important concepts for spacetoground optical communication[J]. Journal of Applied Optics, 2005, 26(6): 54-57.
    [8]YIN Zhi-guo, HE Jun, HUANG Chang-chun, DENG Dai-zu. Experiment Analysis of Influence of Atmosphere Stochastic Channel on Laser Transmission[J]. Journal of Applied Optics, 2005, 26(4): 33-35.
    [9]ZHANG Wen-tao, ZHU Bao-hua. The Study for Laser Beam Transmission Character in Atmosphere Rondom Channer by Using CCD[J]. Journal of Applied Optics, 2004, 25(5): 33-36.
    [10]LI Xiao-feng, CHEN Yan, HU Yu. The Analysis of Wavelength Selection for Space-to-Ground Laser Communication[J]. Journal of Applied Optics, 2004, 25(1): 30-33.

Catalog

    Article views (770) PDF downloads (101) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return