Citation: | JIANG Fei-hong. Infrared radiative transfer model of pollution cloud and computer simulation of infrared spectra[J]. Journal of Applied Optics, 2009, 30(4): 688-691. |
[1]GRIFFITHS P R, HASETH J A, De. Fourier Tran-sform Infrared Spectrometry[M]. New York:Wiley-interscience Publication, 1986.
[2]FLANIGAN D F. Detection of organic vapors with active and passive sensors:a comparison[J]. Appl.Opt.,1986,25(23):4253-4260. [3]HOFFLAND L D, PIFFATH R J,BOUCK J B.Spectral signatures of chemical agents and simulants[J]. Opt. Eng., 1985,24(6):982-984. [4]HARING R, MATZ G, RUSCH P, et al. New scanning infrared gas imaging system (SIGIS 2) for emergency response forces in Chemical and Biological Standoff Detection III[J].SPIE,2005,5995:174-181. [5]THERIAULT J M, PUCKRIN E, Hancock J, et al.Passive standoff detection of chemical warfare agents on surfaces[J]. Applied Optics, 2004,43(31): 5870-5885. [6]BELL A, DYER C, JONES A, et al. Stand-off liquid CW detection in chemical and biological standoff detection[J].SPIE,2004,5268:302-309. [7]HARING R. Passive remote sensing of pollutant clouds by FTIR spectrometry: Signal-to-noise ratio as a function of spectral resolution[J]. Applied Optics,2004,43(23):4603-4610. [8]THTRIAULT J M.Modeling the responsivity and self-emission of a double-beam Fourier-transform infrared interferometer[J]. Applied Optics, 1999,38:505-515. [9]COMBS R J.Thermal stability evaluation for pa-ssive FTIR spectrometry[J]. Field Analytical Chemistry and Technology,1999,3:81-94. [10]张骏,荀毓龙.叠加模型仿真化学烟雾红外光谱[J].红外与毫米波学报,1998,17(3):226-230. ZHANG Jun, XUN Yu-long. Superimposition model on computer simulation for spectra of chemical smoke[J]. Journal of Infrared and Millimeter Waves,1998,17(3):226-230. (in Chinese with an English abstract) [11]陈衡.红外物理学[M].北京:国防工业出版社,1985. CHEN Heng.Infrared Physics[M]. Beijing: National Defence Industry Publishing House, 1985. (in Chinese) |
[1] | CHEN Haiyong, LIU Boyang, YAN Xingwei. A Small Object of UAV Detection Algorithm for Visible Light Images Based on YOLO-SCAT[J]. Journal of Applied Optics. |
[2] | YU Bing. Progress and prospects in national defense optical metrology technology[J]. Journal of Applied Optics, 2022, 43(4): 565-576. DOI: 10.5768/JAO202243.0409002 |
[3] | QIU Chao, ZHAI Siting, WU Kexuan, SUN Hongsheng, WANG Jiapeng, ZHANG Yuguo, YANG Wanglin, DU Jidong, GUO Yapin. Research on low-temperature infrared radiation measurement technology under vacuum condition[J]. Journal of Applied Optics, 2020, 41(4): 730-736. DOI: 10.5768/JAO202041.0406002 |
[4] | LI Fan-ming, NIU Ji-yong, MA Li-xiang. Feasibility analysis of space target detection based on infrared polarization properties[J]. Journal of Applied Optics, 2013, 34(4): 653-657. |
[5] | HAO Ji-ping, LI Xin-ze, DU Cheng-gong, HAO Li-feng. Position deviation measurement between projectile explosion and target for air defense system[J]. Journal of Applied Optics, 2011, 32(6): 1189-1192. |
[6] | CHEN Chao, YANG Hong-ru, WU Lei, LI Gao-ping. Underwater target detection with electro-optical system[J]. Journal of Applied Optics, 2011, 32(6): 1059-1066. |
[7] | WANG Man-yu, ZHANG Kun, LIU Jian, WANG Hui-lin, ZHANG Wei-guo. Direct targeting and engagement with airborne satellite guided weapon[J]. Journal of Applied Optics, 2011, 32(4): 598-601. |
[8] | HAO Ji-ping, XU Li-qun, LI Gang, HAO Rui-yun, LI Jun. Design and application of target detection range related analysis[J]. Journal of Applied Optics, 2008, 29(3): 403-407. |
[9] | CHEN Xin-jin, YUAN Yan, LI Li-ying, XIAO Xiang-guo, LIU Hui. Analysis of signal-to-noise ratio for target detection[J]. Journal of Applied Optics, 2007, 28(4): 397-400. |
[10] | WANG Jian-hua. Development of Night Vision Instrument in Air-Defense[J]. Journal of Applied Optics, 2004, 25(4): 29-30. |