Citation: | ZHANG Bohan, YANG Jun, XIE Xingjuan, JIANG Yanhuan. CO2 positive pressure measurement technology based on absorption spectroscopy[J]. Journal of Applied Optics, 2022, 43(1): 106-110. DOI: 10.5768/JAO202243.0103006 |
In order to study the influence of adjacent spectral lines under positive pressure in the gas detection process of tunable diode laser absorption spectroscopy (TDLAS) technology, a pressure measurement model based on integral absorbance was established. Taking CO2 as the research object, the simulations and experiments of pressure measurement in the range of (1~2) atm were carried out at room temperature and high purity. The results show that as the pressure increases, the degree of mutual influence between adjacent absorption spectral lines increases, and the degree of deviation of the absorbance curve from the zero baseline increases. The pressure measurement results have a maximum relative deviation of 4.94% at 1.25 atm, a minimum relative deviation of 0.73% at 2.00 atm, and an average relative deviation of 3%.
[1] |
段金虎, 金星, 王广宇, 等. 基于直接吸收光谱测量气体的压强[J]. 物理实验,2016,36(4):7-11. doi: 10.3969/j.issn.1005-4642.2016.04.002
DUAN Jinhu, JIN Xing, WANG Guangyu, et al. Measuring gas pressure based on direct absorption spectroscopy[J]. Physics Experimentation,2016,36(4):7-11. doi: 10.3969/j.issn.1005-4642.2016.04.002
|
[2] |
宫学程, 杨军. 基于TDLAS的压力测量技术[J]. 计测技术,2019,39(3):8-13.
GONG Xuecheng, YANG Jun. Pressure measurement technology based on TDLAS[J]. Metrology & Measurement Technology,2019,39(3):8-13.
|
[3] |
PENG Zhimin, DING Yanjun, CHE Lu, et al. Calibration-free wavelength modulated TDLAS under high absorbance conditions. [J]. Optics express, 2011, 19(23): 缺引文起止页码
PENG Zhimin, DING Yanjun, CHE Lu, et al. Calibration-free wavelength modulated TDLAS under high absorbance conditions.[J]. Optics Express,2011,19(23):23104-23110.
|
[4] |
李峥辉, 姚顺春, 卢伟业,等. TDLAS测量CO2的温度影响修正方法研究[J]. 光谱学与光谱分析,2018,38(7):2048-2053.
LI Zhenghui, YAO Shunchun, LU Weiye, et al. Study ontemperature correction method of CO2 Measurement by TDLAS[J]. Spectroscopy and Spectral Analysis,2018,38(7):2048-2053.
|
[5] |
邵欣. 利用波长调制光谱的燃烧场温度原位测量[J]. 红外与激光工程,2019,48(7):190-195.
SHAO Xin. In-situ temperature measurement for combustion field based on wavelength modulation spectroscopy[J]. Infrared and Laser Engineering,2019,48(7):190-195.
|
[6] |
何莹, 张玉钧, 王立明, 等. 高温氨逃逸激光原位监测的浓度反演算法[J]. 红外与激光工程,2014,43(3):897-901. doi: 10.3969/j.issn.1007-2276.2014.03.041
HE Ying, ZHANG Yujun, WANG Liming, et al. Concentration inversion algorithm in ammonia slip monitoring in situ based on laser technology in high temperature[J]. Infrared and Laser Engineering,2014,43(3):897-901. doi: 10.3969/j.issn.1007-2276.2014.03.041
|
[7] |
LEIFER I, MELTON C, TRATT D M, et al. Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA[J]. Environmental Pollution,2017,221:37-51. doi: 10.1016/j.envpol.2016.09.083
|
[8] |
姚德龙, 陈松. 固体火箭发动机羽流流速TDLAS测量方法研究[J]. 应用光学,2020,41(2):342-347. doi: 10.5768/JAO202041.0203001
YAO Delong, CHEN Song. Study on TDLAS measurement method for plume velocity of solid rocket motor[J]. Journal of Applied Optics,2020,41(2):342-347. doi: 10.5768/JAO202041.0203001
|
[9] |
杨松. 氨逃逸测量技术在脱硝系统中的应用研究与优化[J]. 现代化工,2018,38(6):216-219.
YANG Song. Research and optimization of application of ammonia escape measurement technology in denigration system[J]. Modern Chemical Industry,2018,38(6):216-219.
|
[10] |
陈祥, 阚瑞峰, 杨晨光, 等. 基于TDLAS技术的空气气压精确测量[J]. 光电子·激光,2015,26(4):719-723.
CHEN Xiang, KAN Ruifeng, YANG Chenguang, et al. Precise measurement of air pressure using tunable diode laser absorption spectroscopy technology[J]. Journal of Optoelectronics·Laser,2015,26(4):719-723.
|
[11] |
王迪, 李玉爽, 濮御, 等. 气体浓度激光光谱检测温度影响修正研究[J]. 应用光学,2020,41(2):348-353. doi: 10.5768/JAO202041.0203002
WANG Di, LI Yushuang, PU Yu, et al. Study on temperature influence correction of gas concentration laser spectrum detection[J]. Journal of Applied Optics,2020,41(2):348-353. doi: 10.5768/JAO202041.0203002
|
[12] |
朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学,2017,10(4):455-461. doi: 10.3788/co.20171004.0455
ZHU Xiaorui, LU Weiye, RAO Yuzhou, et al. The baseline selection method of TDLAS direct absorption method for CO2 measurement[J]. Chinese Optics,2017,10(4):455-461. doi: 10.3788/co.20171004.0455
|
[13] |
齐汝宾, 赫树开, 李新田, 等. 基于HITRAN光谱数据库的TDLAS直接吸收信号仿真研究[J]. 光谱学与光谱分析,2015,35(1):172-177. doi: 10.3964/j.issn.1000-0593(2015)01-0172-06
QI Rubin, HE Shukai, LI Xintian, et al. Simulation of TDLAS direct absorption based on HITRAN database[J]. Spectroscopy and Spectral Analysis,2015,35(1):172-177. doi: 10.3964/j.issn.1000-0593(2015)01-0172-06
|
[14] |
聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光,2018,45(9):9-29.
NIE Wei, KAN Ruifeng, YANG Chenguang, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers,2018,45(9):9-29.
|
[15] |
CHRISTOPHER S G, VICTOR A M, MITCHELL R S, et al. Strand spectraPlot. com: integrated spectroscopic modeling of atomic and molecular gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200: 249-257.
|
[1] | HU Yunhang, WANG Lingjie, LIU Yang, WANG Lianqiang, ZHOU Di. Mathematical modeling and evaluation of signal-to-noise ratio for single-photon laser active detection[J]. Journal of Applied Optics, 2025, 46(1): 194-201. DOI: 10.5768/JAO202546.0107001 |
[2] | MA Shibang, LI Dong, XIE Qi, LI Hongguang, ZHANG Deng, CHU Junwei, SUN Yu'nan. Calibration technology for spectral range and signal-to-noise ratio of terahertz time-domain spectrometer[J]. Journal of Applied Optics, 2023, 44(5): 1068-1072. DOI: 10.5768/JAO202344.0503002 |
[3] | ZHAO Ming, WANG Tianshu. High SNR multi-wavelength 2 μm actively mode-locked fiber laser[J]. Journal of Applied Optics, 2021, 42(1): 194-199. DOI: 10.5768/JAO202142.0108001 |
[4] | WU Xing-lin, QIU Ya-feng, QIAN Yun-sheng, LIU Zhao-lu, CHENG Hong-chang. Relationship between voltage of MCP and signal-to-noise ratio of UV image intensifier[J]. Journal of Applied Optics, 2013, 34(3): 494-497. |
[5] | LIU Shu-lin, DONG Yu-hui, SUN Jian-ning, DENG Guang-xu. Relation between signal-to-noise ratio of LLL image intensifier and voltage of MCP[J]. Journal of Applied Optics, 2009, 30(4): 650-653. |
[6] | XIANG Shi-ming. Theoretical limit for SNR of LLL image intensifiers[J]. Journal of Applied Optics, 2008, 29(5): 724-726. |
[7] | SHI Feng, CHENG Hong-chang, HE Ying-ping, LIANG Hong-jun. Optimization for signal-to-noise ratio of low-light-level image intensifier[J]. Journal of Applied Optics, 2008, 29(4): 562-564. |
[8] | CHEN Xin-jin, YUAN Yan, LI Li-ying, XIAO Xiang-guo, LIU Hui. Analysis of signal-to-noise ratio for target detection[J]. Journal of Applied Optics, 2007, 28(4): 397-400. |
[9] | PAN Jing-sheng, SU De-tan, XU Zhi-qing, LIU Shu-lin. High signal-to-noise ratio MCP for Gen.Ⅲ image intensifier[J]. Journal of Applied Optics, 2007, 28(3): 301-304. |
[10] | ZHOU Bin, LIU Bing-qi, MAN Bo. Research on Testing Image Transfer Signal-to-Noise Ratio of Image Intensifer[J]. Journal of Applied Optics, 2004, 25(5): 60-61. |
1. |
方波浪,武俊杰,王晟,吴振杰,李天植,张洋,杨鹏翎,王建国. 基于物理信息神经网络的金属表面吸收率测量方法. 物理学报. 2024(09): 126-133 .
![]() | |
2. |
张金玉,金尚忠,张彪,吴磊,俞兵,袁良,黎高平. 光腔衰荡法数据截取对时间常数测量精度的影响分析. 应用光学. 2023(01): 153-158 .
![]() | |
3. |
张彪,张金玉,吉晓,段园园,吴磊,黎高平,于东钰,阴万宏. 测量大口径光学元件反射率用精密扫描系统误差分析. 应用光学. 2023(02): 380-385 .
![]() | |
4. |
孟宁喜,郭伟,吴立志,沈瑞琪,叶迎华,张伟. 激光诱导多孔阳极氧化铝等离子体的特性. 中国激光. 2019(02): 271-277 .
![]() |