Citation: | HU Yunhang, WANG Lingjie, LIU Yang, et al. Mathematical modeling and evaluation of signal-to-noise ratio for single-photon laser active detection[J]. Journal of Applied Optics, 2025, 46(1): 194-201. DOI: 10.5768/JAO202546.0107001 |
Long-range detection using single-photon lidar can increase the farthest detection distance, and due to the complexity of its transmission link, a mathematical model of signal-to-noise ratio for single-photon laser active detection was established. Firstly, the echo signal model of the pulsed laser in the full link of active detection considering diffraction was established, and the size of the number of signal photons received by the single-photon detector was calculated. Then, the composition of noisy photoelectrons in the active detection process was analyzed, and the number of noisy photoelectrons was quantitatively calculated. Based on the above model, the echo signal-to-noise ratio model under the consideration of the aiming deviation of the optic axis was established. A set of system parameters of a single-photon laser detection system used for theoretical model validation was simulated and analyzed, and the relationship between the laser pulse energy and the size of the echo signal-to-noise ratio was analyzed under the influence of different target detection distances and different aperture sizes of the receiving system. The results were compared with those calculated by the echo signal-to-noise ratio model based on the lidar equation, which proved the simplicity and feasibility of the mathematical model.
[1] |
DEGNAN J. Satellite laser ranging: current status and future prospects[J]. IEEE Transactions on Geoscience and Remote Sensing, GE-23(4): 398-413.
|
[2] |
姜会林, 刘志刚, 佟首峰, 等. 机载激光通信环境适应性及关键技术分析[J]. 红外与激光工程, 2007, 36(增刊1): 299-302. doi: 10.3969/j.issn.1007-2276.2007.z1.161
JIANG Huilin, LIU Zhigang, TONG Shoufeng, et al. Analysis for the environmental adaptation and key technologies of airborne laser communication system[J]. Infrared and Laser Engineering, 2007, 36(S1): 299-302. doi: 10.3969/j.issn.1007-2276.2007.z1.161
|
[3] |
刘博, 蒋贇, 王瑞, 等. 全天时单光子激光雷达技术进展与系统评价[J]. 红外与激光工程, 2023, 52(1): 3788.
LIU Bo, JIANG Yun, WANG Rui, et al. Technical progress and system evaluation of all-time single photon lidar[J]. Infrared and Laser Engineering, 2023, 52(1): 3788.
|
[4] |
王瀚基. 基于时间相关单光子计数技术的激光测距实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
WANG Hanji. Experimental study on laser ranging with time-correlated single photon counting techniques[D]. Harbin: Harbin Institute of Technology, 2011.
|
[5] |
WU H B, TAN S L, LIU M X, et al. Design and development of a single-photon laser and infrared common aperture optical system current optics and photonics[J]. Current Optics and Photonics, 2022, 6(2): 171-182.
|
[6] |
侯利冰, 黄庚华, 况耀武, 等. 光子计数激光测距技术研究[J]. 科学技术与工程, 2013, 13(18): 5186-5190. doi: 10.3969/j.issn.1671-1815.2013.18.020
HOU Libing, HUANG Genghua, KUANG Yaowu, et al. Research of photon counting laser ranging technology[J]. Science Technology and Engineering, 2013, 13(18): 5186-5190. doi: 10.3969/j.issn.1671-1815.2013.18.020
|
[7] |
罗远, 贺岩, 耿立明, 等. 基于光子计数技术的远程测距激光雷达[J]. 中国激光, 2016, 43(5): 0514001. doi: 10.3788/CJL201643.0514001
LUO Yuan, HE Yan, GENG Liming, et al. Long-distance laser ranging lidar based on photon counting technology[J]. Chinese Journal of Lasers, 2016, 43(5): 0514001. doi: 10.3788/CJL201643.0514001
|
[8] |
DEGNAN J J. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements[J]. Journal of Geodynamics, 2002, 34(3/4): 503-549.
|
[9] |
沈成方, 张祥金, 张合. 阳光背景下小口径激光引信探测性能研究[J]. 兵器装备工程学报, 2016, 37(12): 145-149. doi: 10.11809/scbgxb2016.12.033
SHEN Chengfang, ZHANG Xiangjin, ZHANG He. Research on detection performance of small caliber laser fuze under the sunlight[J]. Journal of Ordnance Equipment Engineering, 2016, 37(12): 145-149. doi: 10.11809/scbgxb2016.12.033
|
[10] |
CHEN F T, WU L Y, CHEN C X, et al. Raman lidar at 355 nm using low dead time photon counting for atmospheric aerosol measurements[J]. Applied Optics, 2024, 63(6): 1529-1537. doi: 10.1364/AO.515523
|
[11] |
邓潘, 张天舒, 陈卫, 等. 大气探测激光雷达噪声比例因子及信噪比的估算[J]. 红外与激光工程, 2016, 45(增刊1): 88-93.
DENG Pan, ZHANG Tianshu, CHEN Wei, et al. Estimating noise scale factor and SNR of atmospheric lidar[J]. Infrared and Laser Engineering, 2016, 45(S1): 88-93.
|
[12] |
张豪伟, 韩舸, 马昕, 等. 路径积分差分吸收激光雷达反演模型设计与测试[J]. 上海航天, 2023, 40(3): 37-45.
ZHANG Haowei, HAN Ge, MA Xin, et al. Design and test of integral path differential absorption lidar inversion model[J]. Aerospace Shanghai, 2023, 40(3): 37-45.
|
[13] |
周飞, 陈奇, 刘浩, 等. 基于超导单光子探测器的红外光学系统噪声分析和优化[J]. 物理学报, 2024, 73(6): 340-347.
ZHOU Fei, CHEN Qi, LIU Hao, et al. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector[J]. Acta Physica Sinica, 2024, 73(6): 340-347.
|
[14] |
何燃, 朱亮, 董俊发, 等. 基于SPAD单光子探测器的激光雷达建模与仿真[J].激光与光电子学进展, 2024, 61(10):1028003.
HE Ran, ZHU Liang, DONG Junfa, et al. Modeling and simulation of lidar based on SPAD single photon detector[J]. Laser & Optoelectronics Progress, 2024, 61(10):1028003.
|
[15] |
王菊, 邵琦, 于晋龙, 等. 基于二次强度调制的激光测距系统[J]. 物理学报, 2023, 72(22): 45-53.
WANG Ju, SHAO Qi, YU Jinlong, et al. Laser ranging system based on double intensity modulation[J]. Acta Physica Sinica, 2023, 72(22): 45-53.
|
[16] |
ZHANG H T, LI Y Q, LI Z L, et al. Space debris laser ranging with range-gate-free superconducting nanowire single-photon detector[J]. Journal of the European Optical Society, 2023, 19(1): 1-7. doi: 10.1051/jeos/2023002
|
[17] |
LI S, ZHANG Z Y, MA Y, et al. Ranging performance models based on negative-binomial (NB) distribution for photon-counting lidars[J]. Optics Express, 2019, 27(12): A861-A877. doi: 10.1364/OE.27.00A861
|
[18] |
PENG J Y, XIONG Z W, HUANG X, et al. Photon-efficient 3D imaging with a non-local neural network[M]//Computer Vision – ECCV 2020. Cham: Springer International Publishing, 2020: 225-241.
|
[19] |
石顺祥, 王学恩, 马琳. 物理光学与应用光学[M]. 3版. 西安: 西安电子科技大学出版社, 2014: 7.
SHI Shunxiang, WANG Xue’en, MA Lin. Physical optics and applied optics[M]. 3rd ed. Xi’an: Xidian University Press, 2014: 7.
|
[20] |
周磊. 基于回波信号的光束瞄准技术研究[D]. 成都: 中国科学院研究生院(光电技术研究所), 2013.
ZHOU Lei. Study on laser pointing system using return photon signal[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013.
|
[21] |
VOELZ D, BELLINGHAM G D. Computational fourier optics: a MATLAB tutorial[M]. Bellingham, Washington, USA: SPIE Press, 2010: 51.
|
[22] |
胡章芳. MATLAB仿真及其在光学课程中的应用[M]. 北京: 北京航空航天大学出版社, 2015: 158-159.
HU Zhangfang. MATLAB simulation and its application in optics course[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2015: 158-159.
|
[23] |
韩意, 孙华燕. 空间目标光学散射特性研究进展[J]. 红外与激光工程, 2013, 42(3): 758-766. doi: 10.3969/j.issn.1007-2276.2013.03.054
HAN Yi, SUN Huayan. Advances in space target optical scattering character research[J]. Infrared and Laser Engineering, 2013, 42(3): 758-766. doi: 10.3969/j.issn.1007-2276.2013.03.054
|
[24] |
吴洪波, 张新, 王灵杰, 等. 单光子激光与中波红外共口径探测光学系统[J]. 光学 精密工程, 2021, 29(6): 1260-1269. doi: 10.37188/OPE.20212906.1260
WU Hongbo, ZHANG Xin, WANG Lingjie, et al. Common aperture optical system of single photon laser and medium wave infrared[J]. Optics and Precision Engineering, 2021, 29(6): 1260-1269. doi: 10.37188/OPE.20212906.1260
|
[25] |
金伟其, 胡威捷. 辐射度光度与色度及其测量[M]. 北京: 北京理工大学出版社, 2006: 36-39.
JIN Weiqi, HU Weijie. Radiance photometry and colorimetry and their measurement[M]. Beijing: Beijing Institute of Technology Press, 2006: 36-39.
|
[26] |
MCMANAMON P. LiDAR technologies and systems[M]. Bellingham, Washington, USA: SPIE Press, 2019: 237-248.
|
[1] | Tang Ruiyin, Wang Quan, He Hongkun, Hu Lianjun. Measurement of aperture based on wavelet transformand mathematical morphology[J]. Journal of Applied Optics, 2017, 38(4): 622-626. DOI: 10.5768/JAO201738.0403004 |
[2] | MA He, WU Ping, ZHAO Yu. An infrared detection range model based on discrete spectral atmosphere transmittance[J]. Journal of Applied Optics, 2013, 34(3): 532-536. |
[3] | LI Xiao-lin, ZHONG Jian-jun. Numerical model of optical parametric oscillator[J]. Journal of Applied Optics, 2012, 33(5): 862-866. |
[4] | HE Wei-li, GUO Wei-ling, GAO Wei, SHI Chen, CHEN Xi, WU Juan, CHEN Jian-xin. Test method of life-time and reliability evaluation for high-power LED[J]. Journal of Applied Optics, 2008, 29(4): 533-536. |
[5] | GUO Yu, YANG Hong, YANG Zhao-jin, JIANG Chang-lu, YU Shuai. Distortion measurement of lens in CCD camera system[J]. Journal of Applied Optics, 2008, 29(2): 279-282. |
[6] | PAN Pu-feng, HOU Lan-tian, TIAN Yan-tao, LI Xin-xin. Mathematical model for halfbridge ZCS quasiresonant CO2 laser switching power supply[J]. Journal of Applied Optics, 2006, 27(3): 225-227. |
[7] | LIU Jian-ping, ZHANG Hui, ZHAN Chun-lian, LI Zheng-qi. Mathematical model and method for measurement of spectral irradiance[J]. Journal of Applied Optics, 2005, 26(6): 70-073. |
[8] | CHEN Zhi-ping, CHEN Jian-she, CHEN Pei-bin, ZHU Yue-chao, YE Jie-song. Mathematical Model of Staring CCD Detector Arrays[J]. Journal of Applied Optics, 2005, 26(1): 29-31. |
[9] | LI Xu-dong, AI Ke-cong, ZHANG An-feng. Reaearch of the MRTD Mathematical Model for Thermal Imaging System[J]. Journal of Applied Optics, 2004, 25(6): 38-42. |
[10] | LI Xu-dong, AI Ke-cong, WANG Wei. Research on the NETD Mathematical Model for Scanning Thermal Imaging System[J]. Journal of Applied Optics, 2004, 25(4): 37-40. |
1. |
于周锋,郭飞,王惠林. 一种无人机光电吊舱故障信息动态排序方法. 航空计算技术. 2021(01): 71-74 .
![]() | |
2. |
陈天池. 不完全齿轮盘的有限元自由模态分析. 科技创新与应用. 2018(18): 61-62 .
![]() | |
3. |
李大泉,洪华杰,原东阳,江献良. 差动柔性绳传动惯性稳定平台载荷分析与结构校核. 应用光学. 2018(05): 619-626 .
![]() | |
4. |
李志远,黄方. 活塞发声器辐射单元固有模态分析. 水雷战与舰船防护. 2017(04): 1-4+14 .
![]() | |
5. |
马爱秋,张明,卢恒,薛永刚,袁博,冯婕,赵玮,高强. 某机载红外转塔低温像面抖动的分析与研究. 应用光学. 2017(04): 649-654 .
![]() | |
6. |
李全超,谭淞年,李蕾,张洪伟. 某红外相机稳定平台框架结构设计与分析. 红外技术. 2016(09): 728-732 .
![]() | |
7. |
谭淞年,李全超,张洪伟,李蕾. 某航空光电稳定平台方位框架设计和分析. 应用光学. 2016(03): 327-331 .
![]() |