LIU Feng, GALLAIS Laurent. Absorptance measurement on Nb2O5 coating with lock-in thermography method[J]. Journal of Applied Optics, 2020, 41(3): 441-446. DOI: 10.5768/JAO202041.0301002
Citation: LIU Feng, GALLAIS Laurent. Absorptance measurement on Nb2O5 coating with lock-in thermography method[J]. Journal of Applied Optics, 2020, 41(3): 441-446. DOI: 10.5768/JAO202041.0301002

Absorptance measurement on Nb2O5 coating with lock-in thermography method

More Information
  • Received Date: November 05, 2019
  • Revised Date: January 12, 2020
  • Available Online: May 29, 2020
  • The absorptance of the optical coating was quantitatively measured by the lock-in thermography method. The periodically modulated laser intensity was absorbed by the coatings to be tested, and a thermal wave was formed on the coatings surface. The thermal distribution signal recorded by the infrared camera was processed by the lock-in method to obtain the thermal image with improved SNR. The standard absorption samples were used to calibrate the system to obtain the quantitative relations between the photothermal signal amplitude and the samples absorptance, then the samples to be tested were measured under the same experimental conditions, and the absolute absorptance could be obtained by the direct calculation of the photothermal signal. The experimental study is carried out at the wavelength of 1 060 nm, the absorptance of the Nb2O5 coating with different thickness was measured, and the measured absorptance can reach to 80 ppm.
  • [1]
    JAUREGUI C, LIMPERT J, TUNNERMANN A. High-power fibre lasers[J]. Nature Photon,2013,7:861-867.
    [2]
    DONG Jinyan, ZHANG Lei, ZHOU Jiaqi, et al. More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber[J]. Optics Letters,2019,44(7):1801-1804. doi: 10.1364/OL.44.001801
    [3]
    XU Lu, YU Lianghong, CHU Yuxi, et al. Trends in ultrashort and ultrahigh power laser pulses based on optical parametric chirped pulse amplification[J]. Chinese Physics B,2014,24(1):018704.
    [4]
    WILLAMOWSKI U, RISTAU D, WELSCH E. Measuring the absolute absorptance of optical[J]. Applied Optics,1998,37(36):8362-8370. doi: 10.1364/AO.37.008362
    [5]
    蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率[J]. 物理学报,2001,50(5):856-859. doi: 10.3321/j.issn:1000-3290.2001.05.012

    LIN Xiuchuan, SHAO Tianmin. Lumped method for the measurement of laser absorptance of materials[J]. Acta Physica Sinica,2001,50(5):856-859. doi: 10.3321/j.issn:1000-3290.2001.05.012
    [6]
    WU ZL, REICHLING M, HU X Q, et al. Absorption and thermal conductivity of oxide thin films measured by photothermal displacement and reflectance methods[J]. Applied Optics,1993,32(28):5660-5665.
    [7]
    尤博文, 倪辰萌, 沈中华. 光热调制裂纹闭合的激光超声实时监测[J]. 中国激光,2019,46(2):0204009.

    YOU Bowen, NI Chenyin, SHEN Zhonghua. Laser ultrasonic real-time monitoring of photothermal modulation crack closure[J]. Chinese Journal of Laser,2019,46(2):0204009.
    [8]
    HAO Honggang, ZHOU Ao, RAO Min. Study on the absorption uniformity of optical thin films based on the photothermal detuning technique[J]. Applied Optics,2012,51(28):6844-6847. doi: 10.1364/AO.51.006844
    [9]
    郝宏刚, 李斌成, 刘明强. 脉冲激光光热失调技术[J]. 光学学报,2008,28(10):1942-1946. doi: 10.3321/j.issn:0253-2239.2008.10.019

    HAO Honggang, LI Bincheng, LIU Mingqiang. Pulsed laser phtotthermal detuning technique[J]. Acta Optica Sinica,2008,28(10):1942-1946. doi: 10.3321/j.issn:0253-2239.2008.10.019
    [10]
    范树海, 贺洪波, 邵建达, 等. 表面热透镜薄膜吸收测量灵敏度提高方法[J]. 物理学报,2006,55(2):758-763. doi: 10.3321/j.issn:1000-3290.2006.02.050

    FAN Shuhai, HE Hongbo, SHAO Jianda, et al. Method to improve absorption measurement sensitivity of thin films with surface thermal lens technique[J]. Acta Physica Sinica,2006,55(2):758-763. doi: 10.3321/j.issn:1000-3290.2006.02.050
    [11]
    苗银萍, 靳伟, 杨帆, 等. 光纤光热干涉气体检测技术研究进展[J]. 物理学报,2017,66(7):074212. doi: 10.7498/aps.66.074212

    MIAO Yinping, JIN Wei, YANG Fan, et al. Advances in optical fiber photothermal interferometry for gas detection[J]. Acta Physica Sinica,2017,66(7):074212. doi: 10.7498/aps.66.074212
    [12]
    LOVELL J F, JIN C S, HUYNH E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Mater,2011,10:324-332.
    [13]
    ABBASI S, SERVATKHAH M, KESHTKAR M M. Advantages of using gold hollow nanoshells in cancer photothermal therapy[J]. Chinese Physics B,2016,25(8):087301. doi: 10.1088/1674-1056/25/8/087301
    [14]
    刘俊岩, 王飞, 王晓春, 等. 牙齿组织光热动态特性仿真与试验研究[J]. 物理学报,2015,64(19):194203. doi: 10.7498/aps.64.194203

    LIU Junyan, WANG Fei, WANG Xiaochun, et al. Simulation and experimental investigation of tooth tissue in photothermal radiometry dynamic response induced by modluated laser[J]. Acta Physica Sinica,2015,64(19):194203. doi: 10.7498/aps.64.194203
    [15]
    MUZIKA L, ŠVANTNER M, KUCERA M. Lock-in and pulsed thermography for solar cell testing[J]. Applied Optics,2018,57(18):D90-D97.
    [16]
    LIU F, GALLAIS L. Absorption measurements in optical coatings by lock-in Thermography[J]. Applied Optics,2017,56(33):9225-9232. doi: 10.1364/AO.56.009225
    [17]
    BREITENSTEIN O, STRAUBE H, IWIG K. Lock-in thermography with depth resolution on silicon solar cells[J]. Solar Energy Materials and Solar Cells,2018,185:66-74. doi: 10.1016/j.solmat.2018.05.009
    [18]
    ISHIZAKI T, NAGANO H. Measurement of 3D thermal diffusivity distribution with lock-in thermography and application for high thermal conductivity CFRPs[J]. Infrared Physics & Technology,2019,99:248-256.
    [19]
    黄燕杰, 尚建华, 任立红, 等. 用于铝板缺陷无损检测的激光超声有限元模拟研究[J]. 应用光学,2019,40(1):150-156.

    HUANG Yanjie, SHANG Jianhua, REN Llihong, et al. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics,2019,40(1):150-156.
    [20]
    MADRUGA F J, ALBENDEA P, IBARRA-CASTANEDO C, et al. Signal to noise ratio (SNR) comparison for lockin thermographic data processing methods in CFRP specimen[C]//Proceedings of the 2010 International Conference on Quantitative InfraRed Thermography. Québec, Canada: QIRT Council, 2010: 739.
    [21]
    TISSERAND S, FLORY F, GATTO A, et al. Titanium implantation in bulk and thin film amorphous silica[J]. Journal of Applied Physics,1998,83(10):5150-5153. doi: 10.1063/1.367332
    [22]
    GALLAIS L, COMMANDRÉ M. Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces[J]. Applied Optics,2006,45(7):1416-1424. doi: 10.1364/AO.45.001416
    [23]
    DOUTI D B, BÉGOU T, LEMARCHAND F, et al. Analysis of laser energy deposition leading to damage and ablation of HfO2 and Nb2O5 single layers submitted to 500 fs pulses at 1030 and 343 nm[J]. Applied Physics A,2016,122(7):653.
  • Related Articles

    [1]HU Yunhang, WANG Lingjie, LIU Yang, WANG Lianqiang, ZHOU Di. Mathematical modeling and evaluation of signal-to-noise ratio for single-photon laser active detection[J]. Journal of Applied Optics, 2025, 46(1): 194-201. DOI: 10.5768/JAO202546.0107001
    [2]MA Shibang, LI Dong, XIE Qi, LI Hongguang, ZHANG Deng, CHU Junwei, SUN Yu'nan. Calibration technology for spectral range and signal-to-noise ratio of terahertz time-domain spectrometer[J]. Journal of Applied Optics, 2023, 44(5): 1068-1072. DOI: 10.5768/JAO202344.0503002
    [3]ZHAO Ming, WANG Tianshu. High SNR multi-wavelength 2 μm actively mode-locked fiber laser[J]. Journal of Applied Optics, 2021, 42(1): 194-199. DOI: 10.5768/JAO202142.0108001
    [4]WU Xing-lin, QIU Ya-feng, QIAN Yun-sheng, LIU Zhao-lu, CHENG Hong-chang. Relationship between voltage of MCP and signal-to-noise ratio of UV image intensifier[J]. Journal of Applied Optics, 2013, 34(3): 494-497.
    [5]LIU Shu-lin, DONG Yu-hui, SUN Jian-ning, DENG Guang-xu. Relation between signal-to-noise ratio of LLL image intensifier and voltage of MCP[J]. Journal of Applied Optics, 2009, 30(4): 650-653.
    [6]XIANG Shi-ming. Theoretical limit for SNR of LLL image intensifiers[J]. Journal of Applied Optics, 2008, 29(5): 724-726.
    [7]SHI Feng, CHENG Hong-chang, HE Ying-ping, LIANG Hong-jun. Optimization for signal-to-noise ratio of low-light-level image intensifier[J]. Journal of Applied Optics, 2008, 29(4): 562-564.
    [8]CHEN Xin-jin, YUAN Yan, LI Li-ying, XIAO Xiang-guo, LIU Hui. Analysis of signal-to-noise ratio for target detection[J]. Journal of Applied Optics, 2007, 28(4): 397-400.
    [9]PAN Jing-sheng, SU De-tan, XU Zhi-qing, LIU Shu-lin. High signal-to-noise ratio MCP for Gen.Ⅲ image intensifier[J]. Journal of Applied Optics, 2007, 28(3): 301-304.
    [10]ZHOU Bin, LIU Bing-qi, MAN Bo. Research on Testing Image Transfer Signal-to-Noise Ratio of Image Intensifer[J]. Journal of Applied Optics, 2004, 25(5): 60-61.
  • Cited by

    Periodical cited type(4)

    1. 方波浪,武俊杰,王晟,吴振杰,李天植,张洋,杨鹏翎,王建国. 基于物理信息神经网络的金属表面吸收率测量方法. 物理学报. 2024(09): 126-133 .
    2. 张金玉,金尚忠,张彪,吴磊,俞兵,袁良,黎高平. 光腔衰荡法数据截取对时间常数测量精度的影响分析. 应用光学. 2023(01): 153-158 . 本站查看
    3. 张彪,张金玉,吉晓,段园园,吴磊,黎高平,于东钰,阴万宏. 测量大口径光学元件反射率用精密扫描系统误差分析. 应用光学. 2023(02): 380-385 . 本站查看
    4. 孟宁喜,郭伟,吴立志,沈瑞琪,叶迎华,张伟. 激光诱导多孔阳极氧化铝等离子体的特性. 中国激光. 2019(02): 271-277 .

    Other cited types(6)

Catalog

    Article views (1718) PDF downloads (33) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return