Fang Jiulong, Chang Jianhua, Dai Feng, Liu Zhenxing, Dou Xiaolei, Zhao Yongyi. Research on methane gas spectroscopy detection method based on mid-infrared DFG laser source[J]. Journal of Applied Optics, 2018, 39(5): 735-742. DOI: 10.5768/JAO201839.0506001
Citation: Fang Jiulong, Chang Jianhua, Dai Feng, Liu Zhenxing, Dou Xiaolei, Zhao Yongyi. Research on methane gas spectroscopy detection method based on mid-infrared DFG laser source[J]. Journal of Applied Optics, 2018, 39(5): 735-742. DOI: 10.5768/JAO201839.0506001

Research on methane gas spectroscopy detection method based on mid-infrared DFG laser source

More Information
  • Received Date: May 14, 2018
  • Revised Date: May 23, 2018
  • Gas spectroscopy detection based on mid-infrared laser source has been applied in the field of atmospheric monitoring as a new method for measuring and analyzing trace gases.A detection system of methane gas based on mid-infrared difference-frequency generation (DFG) laser source was constructed.The system uses a tunable semiconductor laser with 1 550 nm and 1 060 nm band as the fundamental frequency source, and uses a periodically-poled lithium niobate (PPLN) crystal as the differential frequency nonlinear inverter to achieve a narrow linewidth tunable mid-infrared source output at 3.3 μm. Experimental results show that, when the temperature of the PPLN crystal is fixed at 99.5℃, the maximum idler laser output power of 112 μW, and the nonlinear DFG conversion efficiency is 1.246 mW/W2. The acceptance bandwidth for the pump wavelength and the crystal temperature are 5.3 nm and 4.3℃, respectively. On this basis, the methane gas absorption spectrum and the second harmonic detection signal at 3 028.751 cm-1 were obtained by direct absorption method and harmonic detection method, respectively.
  • [1]
    阚瑞峰, 刘文清, 张玉钧, 等.可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量[J].物理学报, 2005, 54(4): 1927-1930. doi: 10.3321/j.issn:1000-3290.2005.04.083

    KAN Ruifeng, LIU Wenqing, ZHANG Yujun, et al. Absorption measurements of ambient methane with tunable diode laser[J]. Acta Physica Sinica, 2005, 54(4): 1927-1930. doi: 10.3321/j.issn:1000-3290.2005.04.083
    [2]
    WU R J, WU J G, TSAI T K, et al. Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures[J]. Sensors & Actuators B Chemical, 2006, 120(1):104-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce59f5e6c92cd3990f14f42b087ef30f
    [3]
    李彬, 刘慧芳, 何启欣, 等.基于1 654nm分布反馈激光器的甲烷检测系统[J].光谱学与光谱分析, 2016, 36(1):20-26. http://www.cnki.com.cn/Article/CJFDTotal-GUAN201601006.htm

    LI Bin, LIU Huifang, HE Qixin, et al. A methane detection system using distributed feedback laser at 1654 nm[J]. Spectroscopy and Spectral Analysis, 2016, 36(1):20-26. http://www.cnki.com.cn/Article/CJFDTotal-GUAN201601006.htm
    [4]
    SHEMSHAD J, AMINOSSADATI S M, KIZIL M S. A review of developments in near infrared methane detection based on tunable diode laser[J]. Sensors & Actuators B Chemical, 2012, 171/172(8):77-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0786c2049c68ffc2412c627672ba5ae
    [5]
    WANG Q, CHANG J, WEI W, et al. Dual-beam wavelength modulation spectroscopy for sensitive detection of water vapor[J]. Applied Physics B, 2014, 117(4):1015-1023. doi: 10.1007/s00340-014-5922-y
    [6]
    CAO Y, SANCHEZ N P, JIANG W, et al. Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser[J]. Optics Express, 2015, 23(3):2121-2132. doi: 10.1364/OE.23.002121
    [7]
    GAO Q, ZHANG Y, YU J, et al. Tunable multi-mode diode laser absorption spectroscopy for methane detection[J]. Sensors & Actuators A Physical, 2013, 199(9):106-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13b5502c35bc7ad46c15026cceec019b
    [8]
    MÉNINI P, PARRENT F, GUERRERO M, et al. CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum[J]. Sensors & Actuators B Chemical, 2004, 103(1/2):111-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31121557d8d7382293d126f640fbb905
    [9]
    CHEN C, HE J, XU D, et al. Study of nano-Au-assembled amperometric CO gas sensor[J]. Sensors & Actuators B Chemical, 2005, 107(2):866-871. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bee1a0bbf38ecf1d71aea101f1cb1d65
    [10]
    CHOUDHARY M, MISHRA V N, DWIVEDI R. Solid-state reaction synthesized Pd-doped tin oxide thick film sensor for detection of H2, CO, LPG and CH4[J]. Journal of Science Materials in Electronics, 2013, 24(8):2824-2832. doi: 10.1007/s10854-013-1178-2
    [11]
    CHOUDHARY M, MISHRA V N, DWIVEDI R. Pd-doped Tin-Oxide-based thick-film sensor array for detection of H2, CH4, and CO[J]. Journal of Electronic Materials, 2013, 42(9):2793-2802. doi: 10.1007/s11664-013-2663-3
    [12]
    SOMOV A, BARANOV A, SPIRJAKIN D, et al. Deployment and evaluation of a wireless sensor network for methane leak detection[J]. Sensors & Actuators A Physical, 2013, 202(10):217-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0d75d56dddc72c2898c4e694f0bbf5f
    [13]
    SOMOV A, Baranov A, SPIRJAKIN D. A wireless sensor-actuator system for hazardous gases detection and control[J]. Sensors & Actuators A Physical, 2014, 210(1):157-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e867530fd3b0b0c2e1dd48192516403a
    [14]
    NAGAI D, NISHIBORI M, ITOH T, et al. Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3, combustion catalyst films[J]. Sensors & Actuators B Chemical, 2015, 206:488-494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35e44a5413205a600b4bf459ac882a05
    [15]
    WOLFF M, RHEIN S, BRUHNS H, et al. Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 μm[J].Sensors and Actuators B: Chemical, 2013, 187:574-577. doi: 10.1016/j.snb.2013.04.084
    [16]
    WANG F, WU Q, HUANG Q, et al. Simultaneous measurement of 2-dimensional H2O concentration and temperature distribution in premixed methane/air flame using TDLAS-based tomography technology[J]. Optics Communications, 2015, 346:53-63. doi: 10.1016/j.optcom.2015.02.015
    [17]
    WEI W, CHANG J, HUANG Q, et al. Wavelength modulation spectroscopy with signal-reference beam method for highly sensitive gas detection[J]. Applied Physics B, 2015, 118(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=525297e4b261165b16c93cd3b689f876
    [18]
    SUR R, SUN K, JEFFRIES J B, et al. Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier[J]. Fuel, 2015, 150:102-111. doi: 10.1016/j.fuel.2015.02.003
    [19]
    NWABOH J A, PRATZLER S, WERHAHN O, et al. Tunable diode laser absorption spectroscopy sensor for calibration free humidity measurements in pure methane and low CO2 natural gas[J]. Applied Spectroscopy, 2017, 71(5):888-900. doi: 10.1177/0003702816658672
    [20]
    SALATI S H, KHORSANDI A. Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: theory and experiment[J]. Applied Physics B, 2014, 116(3):521-531. doi: 10.1007/s00340-013-5728-3
    [21]
    ZHENG C T, HUANG J Q, YE W L, et al. Demonstration of a portable near-infrared CH4, detection sensor based on tunable diode laser absorption spectroscopy[J]. Infrared Physics & Technology, 2013, 61(6):306-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c914235401c1475f9ff93d472b5f7e67
    [22]
    LI B, HE Q X, LIU H F, et al. A trace gas sensor using near infrared distributed feedback laser at 1654 nm[J]. Laser Physics, 2015, 25(8):086001. doi: 10.1088/1054-660X/25/8/086001
    [23]
    LIAO C C, LIEN Y H, WU K Y, et al. Widely tunable difference frequency generation source for high-precision mid-infrared spectroscopy[J]. Optics Express, 2013, 21(8):9238. doi: 10.1364/OE.21.009238
    [24]
    REY J M, FILL M, FELDER F, et al. Broadly tunable mid-infrared VECSEL for multiple components hydrocarbon gas sensing[J]. Applied Physics B, 2014, 117(3):935-939. doi: 10.1007/s00340-014-5911-1
    [25]
    SAJID M B, JAVED T, FAROOQ A. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 155:66-74. https://www.sciencedirect.com/science/article/abs/pii/S002240731500028X
    [26]
    ABE M, NISHIDA Y, TADANAGA O, et al. Rapid spectrum measurement at 3 μm over 100 nm wavelength range using mid-infrared difference frequency generation source[J]. Optics Letters, 2016, 41(7):1380-1383. doi: 10.1364/OL.41.001380
    [27]
    TRIKI M, BA T N, VICET A. Compact sensor for methane detection in the mid infrared region based on quartz enhanced photoacoustic spectroscopy[J]. Infrared Physics & Technology, 2015, 69:74-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45f6191839b473f6abad2f3a32e666e4
    [28]
    KOSTEREV A, WYSOCKI G, BAKHIRKIN Y, et al. Application of quantum cascade lasers to trace gas analysis[J]. Applied Physics B, 2008, 90(2):165-176. doi: 10.1007/s00340-007-2846-9
    [29]
    WELZEL S, LOMBARDI G, DAVIES P B, et al. Trace gas measurements using optically resonant cavities and quantum cascade lasers operating at room temperature[J]. Journal of Applied Physics, 2008, 104(9):3325. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028887764/
    [30]
    戴峰, 常建华, 房久龙, 等.差频产生中红外光源及甲烷气体光谱检测[J].电子测量与仪器学报, 2017, 31(9):1447-1452. http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201709016

    DAI Feng, CHANG Jianhua, FANG Jiulong, et al. Mid-infrared light source based on difference frequency generation and detection of methane gas spectrum[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(9):1447-1452. http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201709016
    [31]
    JIANG J, CHANG J H, FENG S J, et al. Mid-IR multiwavelength difference frequency generation based on fiber lasers[J]. Optics Express, 2010, 18(5): 4740-4747. doi: 10.1364/OE.18.004740
  • Related Articles

    [1]ZHANG Jie, XUE Peng, ZHANG Rui, WU Qiannan. Snapshot spectral imaging technique based on field compression[J]. Journal of Applied Optics. DOI: 10.5768/JAO202546.0200000
    [2]CUI Yumin, YIN Liju, SUI Liguo, ZHOU Hui, DENG Yulin. Compression and reconstruction of photon counting integral imaging[J]. Journal of Applied Optics, 2023, 44(2): 295-306. DOI: 10.5768/JAO202344.0202001
    [3]TANG Wenrui, MA Lin, ZHU Siqi, LIN Sifan, JIA Longze. Area mapping for water and forest based on satellite hyper-spectral remote sensing[J]. Journal of Applied Optics, 2022, 43(5): 886-892. DOI: 10.5768/JAO202243.0502002
    [4]JIANG Zonghua, TIAN Xin, YANG Jinling. Reconstruction method of computational ghost imaging based on non-local generalized total variation[J]. Journal of Applied Optics, 2022, 43(1): 52-59. DOI: 10.5768/JAO202243.0102001
    [5]LIU Xiaomin, MA Zhibang, WANG Qiancheng, DU Mengzhu, ZHU Yunfei, MA Fengying, LIANG Erjun. Compression light field reconstruction and depth estimation[J]. Journal of Applied Optics, 2019, 40(2): 179-185. DOI: 10.5768/JAO201940.0201001
    [6]Li Chan, Wan Xiaoxia, Xie Wei, Li Tianting, Liang Jinxing. Color filter design method for multi-channel spectral acquisition system[J]. Journal of Applied Optics, 2016, 37(5): 639-643. DOI: 10.5768/JAO201637.0501001
    [7]Zhu Yuan-yuan, Gao Jiao-bo, Gao Ze-dong, Wu Jiang-hui, Meng He-min. Fusion and vision algorithm of spectral data based on mapping-evaluating-optimizing methods within multi-section[J]. Journal of Applied Optics, 2015, 36(5): 728-734. DOI: 10.5768/JAO201536.0502001
    [8]XIAO Long-long, LIU Kun, HAN Da-peng, LIU Ji-ying. Application of compressed sensing in optical imaging[J]. Journal of Applied Optics, 2012, 33(1): 71-77.
    [9]LIN Fu-bin, PANG Qi-chang, MA Ji, ZHAO Jing, LI Zi-lei, ZHANG Wan-xiang. Identification of herbal medicines based on spectral imaging detection[J]. Journal of Applied Optics, 2010, 31(2): 277-281.
    [10]HUANG Bo, DAI Cai-hong, YU Jia-lin. Data interpolating and curve fitting for standard lamps of spectral irradiance[J]. Journal of Applied Optics, 2009, 30(1): 44-49.
  • Cited by

    Periodical cited type(2)

    1. 温雪俊. 基于最优子抽样的大数据泊松回归系数估计. 山东理工大学学报(自然科学版). 2024(06): 59-64 .
    2. 崔玉敏,尹丽菊,隋立国,周辉,邓玉林. 光子计数集成成像的压缩与重构. 应用光学. 2023(02): 295-306 . 本站查看

    Other cited types(0)

Catalog

    Article views (522) PDF downloads (91) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return