JIANG Zonghua, TIAN Xin, YANG Jinling. Reconstruction method of computational ghost imaging based on non-local generalized total variation[J]. Journal of Applied Optics, 2022, 43(1): 52-59. DOI: 10.5768/JAO202243.0102001
Citation: JIANG Zonghua, TIAN Xin, YANG Jinling. Reconstruction method of computational ghost imaging based on non-local generalized total variation[J]. Journal of Applied Optics, 2022, 43(1): 52-59. DOI: 10.5768/JAO202243.0102001

Reconstruction method of computational ghost imaging based on non-local generalized total variation

More Information
  • Received Date: August 04, 2021
  • Revised Date: October 24, 2021
  • Available Online: December 15, 2021
  • The ghost imaging is an imaging technology that can penetrate harsh environments such as the heavy fog. Aiming at the problems of more noise and lower image contrast of reconstructed images of traditional ghost imaging, the non-local generalized total variation method was applied for image reconstruction of ghost imaging, and the reconstruction method of computational ghost imaging based on non-local generalized total variation was proposed. The method constructed the non-local correlation weights to design the gradient operator, which was substituted into total variation reconstruction algorithm, so that the reconstructed images could effectively remove the noise while achieving the better detail restoration. The simulations were performed under different conditions, and the peak signal-to-noise ratio of proposed method was improved by about 1 dB compared with other methods, while it had better subjective visual effects. The experimental platform was designed and built to verify the effectiveness of the algorithm. The experimental results verify the superiority of the proposed method in terms of noise removal and detail reconstruction.

  • [1]
    PITTMAN T B, SHIH Y H, STREKALOV D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A,1995,52(5):R3429-R3432. doi: 10.1103/PhysRevA.52.R3429
    [2]
    STREKALOV D V, SERGIENKO A V, KLYSHKO D N, et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters,1995,74(18):3600-3603. doi: 10.1103/PhysRevLett.74.3600
    [3]
    BENNINK R S, BENTLEY S J, BOYD R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters,2002,89(11):113601. doi: 10.1103/PhysRevLett.89.113601
    [4]
    GATTI A, BRAMBILLA E, BACHE M, et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters,2004,93(9):093602. doi: 10.1103/PhysRevLett.93.093602
    [5]
    GATTI A, BRAMBILLA E, BACHE M, et al. Correlated imaging, quantum and classical[J]. Physical Review A Atomic Molecular & Optical Physics,2004,70(1):235-238.
    [6]
    VALENCIA A, SCARCELLI G, D'ANGELO M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters,2005,94(6):063601. doi: 10.1103/PhysRevLett.94.063601
    [7]
    ZHANG DA, ZHAI Yanhua, WU Ling'an, et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters,2005,30(18):2354-2356. doi: 10.1364/OL.30.002354
    [8]
    GATTI A, BACHE M, MAGATTI D, et al. Coherent imaging with pseudo-thermal incoherent light[J]. Journal of Modern Optics,2006,53:739-760. doi: 10.1080/09500340500147240
    [9]
    SCARCELLI G, BERARDI V, SHIH Y H. Phase-conjugate mirror via two-photon thermal light imaging[J]. Applied Physics Letters,2006,88(6):061106. doi: 10.1063/1.2172410
    [10]
    CHENG J, HAN S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters,2004,92(9):093903. doi: 10.1103/PhysRevLett.92.093903
    [11]
    CHAN W L, CHARAN K, TAKHAR D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters,2008,93(12):121105. doi: 10.1063/1.2989126
    [12]
    SHAPIRO J H. Computational ghost imaging[J]. Physical Review A,2008,78(6):061802. doi: 10.1103/PhysRevA.78.061802
    [13]
    BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector[J]. Physical Review A. 2009, 79(5): 053840.
    [14]
    LONG M, DU B, He C, et al. Region-of-interest detection viasuper pixel-to-pixel saliency analysis for remote sensing image[J]. IEEE Geoscience & Remote Sensing Letters,2017,13(12):1752-1756.
    [15]
    SUI Liansheng, CHENG Yin, LI Bing, et al. Optical image encryption via high-quality computational ghost imaging using iterative phase retrieval[J]. Laser Physics Letters,2018,15(7):075204-075213. doi: 10.1088/1612-202X/aac002
    [16]
    SONG Y, HO Y S. High-resolution depth map generator for 3D video applications using time-of-flight cameras[J]. IEEE Transactions on Consumer Electronics,2018,63(4):386-391.
    [17]
    KATZ O,BROMBERG Y,SILBERBERG Y. Compressiveghost imaging[J]. Physical Review Letters,2009,95(13):131110.
    [18]
    刘晓旻, 马治邦, 王前程, 等. 压缩光场重建与深度估计[J]. 应用光学,2019,40(2):179-185.

    LIU Xiaomin, MA Zhibang, WANG Qiancheng, et al. Compressed optical field reconstruction and depth estimation[J]. Journal of Applied Optics,2019,40(2):179-185.
    [19]
    肖龙龙, 刘昆, 韩大鹏, 等. 压缩感知理论在光学成像中的应用[J]. 应用光学,2012,33(1):71-77.

    XIAO Longlong, LIU Kun, HAN Dapeng, et al. Application of compressed sensing in optical imaging[J]. Journal of Applied Optics,2012,33(1):71-77.
    [20]
    胡洋頔, 程正东, 梁振宇, 等. 激光关联成像在烟幕条件下的实验研究[J]. 中国激光,2021,48(4):295-306.

    HU Yangdi, CHENG Zhengdong, LIANG Zhenyu, et al. Experimental study of laser correlation imaging under smoke screen conditions[J]. China Laser,2021,48(4):295-306.
    [21]
    曾文兵. 水下远距离关联成像技术研究[D]. 成都: 电子科技大学, 2018.

    ZENG Wenbing. Research on underwater long-range correlation imaging technology[D]. Chengdu: University of Electronic Science and Technology, 2018.
    [22]
    BOYD S, PARIKH N, HU E C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning,2010,3(1):1-122.
    [23]
    TIAN X, ZHANG M, YANG C, et al. FusionNDVI: a computational fusion approach for high-resolution normalized difference vegetation index[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,99:1-14.
    [24]
    RODRIGUEZ P, WOHLBERG B. Efficient minimization method for a generalized total variation functional[J]. IEEE Transactions on Image Processing,2009,18:322-332. doi: 10.1109/TIP.2008.2008420
    [25]
    LIU Q, XIONG B, ZHANG M. Adaptive sparse norm and nonlocal total variation methods for image smoothing[J]. Mathematical Problems in Engineering: Theory, Methods and Applications,2014,22:426125.1-426125.18.
    [26]
    FERRI F, MAGATTI D, LUGIATO L. Differential ghost imaging[J]. Physical Review Letters,2010,104:253603. doi: 10.1103/PhysRevLett.104.253603
    [27]
    GUO K, JIANG S, ZHENG G. Multilayer fluorescence imaging on a single-pixel detector[J]. Biomedical Optics Express,2016,7(7):2425. doi: 10.1364/BOE.7.002425
    [28]
    GONG W, HAN S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Reports,2015,5:9280. doi: 10.1038/srep09280
    [29]
    HU Xuemei, SUO Jinli, YUE Tao, et al. Patch-primitive driven compressive ghost imaging[J]. Optics Express,2015,23(9):11092-11104. doi: 10.1364/OE.23.011092
  • Related Articles

    [1]LIU Kun, LI Kewu, WANG Shuang, WANG Zhibin, ZHANG Yikun. Dynamic parameter measurement and efficient drive matching method for PEM[J]. Journal of Applied Optics, 2024, 45(2): 415-421. DOI: 10.5768/JAO202445.0203003
    [2]ZHAI Zhongsheng, DUAN Lang, ZHENG Yawen. Analysis of factors affecting beam shaping quality of geometric steady-phase method based on SLM[J]. Journal of Applied Optics, 2023, 44(4): 711-719. DOI: 10.5768/JAO202344.0401002
    [3]LIU Zheqi, WANG Tianshu, ZHENG Chonghui, LIU Xianzhu. MIMO atmospheric transmission characteristics based on spatial light modulator[J]. Journal of Applied Optics, 2022, 43(3): 544-550. DOI: 10.5768/JAO202243.0308001
    [4]ZHENG Xinbo, ZHANG Xuan, LUAN Lin, HONG Hanyu. Large angle range beam scanning control based on crystal spatial light modulator[J]. Journal of Applied Optics, 2020, 41(4): 816-821. DOI: 10.5768/JAO202041.0409803
    [5]Hu Yongtao, Zhai Zhongsheng, Lyu Qinghua, Chen Lie, Lou Deyuan, Yang Qibiao, Peter Bennett, Liu Dun. Parallel processing with femtosecond laser using spatial light modulator[J]. Journal of Applied Optics, 2016, 37(2): 315-320. DOI: 10.5768/JAO201637.0207003
    [6]PEI Chuang, JIANG Xiao-yu, DING Sheng, ZHANG Peng-wei. Three-dimensional display of computer-generated hologram based on spatial light modulator[J]. Journal of Applied Optics, 2013, 34(5): 772-777.
    [7]WANG Jiang-tao, CHEN Xiang-ning. Characteristics of ferroelectric liquid crystal optical addressed spatial light modulator[J]. Journal of Applied Optics, 2012, 33(1): 57-63.
    [8]LIN Pei-qiu, YING Chao-fu, XU Zhan-bin, PANG Hui, LOU Fang. Implementation of controllable zoom lens based on phase-only liquid crystal spatial light modulator[J]. Journal of Applied Optics, 2010, 31(3): 376-380.
    [9]GAO Meng, GAO Jiao-bo, LUO Yan-ling, WANG Xue-wu. Reflective electrically-addressed spatial light modulator based on infrared sheared stress polymer network liquid crystal[J]. Journal of Applied Optics, 2009, 30(5): 849-852.
    [10]KANG Yu-si, LIU Wei-qi, FENG Rui. Optics for laser display[J]. Journal of Applied Optics, 2007, 28(4): 401-405.
  • Cited by

    Periodical cited type(3)

    1. 刘玉洁,万瑜. 机器视觉下动态环境中人体运动状态检测仿真. 计算机仿真. 2024(12): 570-574 .
    2. 崔玉敏,尹丽菊,隋立国,周辉,邓玉林. 光子计数集成成像的压缩与重构. 应用光学. 2023(02): 295-306 . 本站查看
    3. 周牧,胡钟尹,王勇,曹静阳. 基于压缩感知的快速纠缠光量子成像方法. 仪器仪表学报. 2023(09): 137-145 .

    Other cited types(0)

Catalog

    Article views (628) PDF downloads (72) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return