CUI Yumin, YIN Liju, SUI Liguo, ZHOU Hui, DENG Yulin. Compression and reconstruction of photon counting integral imaging[J]. Journal of Applied Optics, 2023, 44(2): 295-306. DOI: 10.5768/JAO202344.0202001
Citation: CUI Yumin, YIN Liju, SUI Liguo, ZHOU Hui, DENG Yulin. Compression and reconstruction of photon counting integral imaging[J]. Journal of Applied Optics, 2023, 44(2): 295-306. DOI: 10.5768/JAO202344.0202001

Compression and reconstruction of photon counting integral imaging

More Information
  • Received Date: December 07, 2022
  • Revised Date: February 02, 2023
  • Available Online: February 09, 2023
  • As an important naked eyes three-dimensional display technology, integral imaging technology completely records the three-dimensional scene information while the huge amount of data puts pressure on the transmission and storage. In order to achieve effective compression and reconstruction of images, according to the characteristics of photon counting integral imaging, a scheme for image compression and reconstruction based on the distributed compressed sensing theory was proposed. In this scheme, images were divided into reference images and non-reference images, which were set with different measurement rates and reconstructed respectively. To ensure the reconstruction quality of non-reference images, a joint reconstruction algorithm was proposed. Firstly, the block measurements were performed on the non-reference images, and the image blocks classification was carried out by considering the correlation with the reference images. Then, combined the measurement information of the reference images, a new measurement vector was constructed to complete the initial image reconstruction. In order to further improve the image reconstruction quality, the image was reconstructed with secondary residual compensation to obtain the final reconstruction results. Finally, a large number of experiments were conducted by setting different measurement rates. The experimental results show that the image reconstruction quality of the proposed algorithm can reach 30 dB when the measurement rate is 0.25, and can reach 35 dB when the measurement rate is 0.4. The performance of the algorithm has certain superiority.

  • [1]
    LIPPMANN G. La photographie integrale[J]. Comptes Rendus de I’Academie Bulgare des Sciences,1908,146:446-451.
    [2]
    MARTÍNEZ-CORRAL M, DORADO A, BARREIRO J C, et al. Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging[J]. Proceedings of IEEE,2017,105(5):825-836. doi: 10.1109/JPROC.2017.2655260
    [3]
    张雷, 焦小雪, 孙羽, 等. 集成成像大纵深物体的三维形貌获取技术[J]. 应用光学,2017,38(4):587-591.

    ZHANG Lei, JIAO Xiaoxue, SUN Yu, et al. 3D shape acquisition technology of object with large depth based on integral imaging[J]. Journal of Applied Optics,2017,38(4):587-591.
    [4]
    YEOM S, JAVIDI B, WATSON E. Photon counting passive 3D image sensing for automatic target recognition[J]. Optics Express,2005,13(23):9310-9330. doi: 10.1364/OPEX.13.009310
    [5]
    DONOHO D L. Compressed sensing[J]. IEEE Transaction on Information Theory,2006,52(4):1289-1306. doi: 10.1109/TIT.2006.871582
    [6]
    蒋宗铧, 田昕, 杨晋陵. 基于非局部广义全变分的计算鬼成像重建方法[J]. 应用光学,2022,43(1):52-59.

    JIANG Zonghua, TIAN Xin, YANG Jinling. Reconstruction method of computational ghost imaging based on non-local generalized total variation[J]. Journal of Applied Optics,2022,43(1):52-59.
    [7]
    吴笑男, 张瑞, 王志斌, 等. 基于FP微阵列的压缩感知光谱重建研究[J]. 应用光学,2021,42(3):436-442. doi: 10.5768/JAO202142.0301010

    WU Xiaonan, ZHANG Rui, WANG Zhibin, et al. Research on compressed sensing spectral reconstruction based on Fabry-Perot micro-array[J]. Journal of Applied Optics,2021,42(3):436-442. doi: 10.5768/JAO202142.0301010
    [8]
    BARON D, DUARTE M F, WAKIN M B, et al. Distributed compressive sensing[J]. IEEE Signal Processing Magazine,2009,21(3):35-47.
    [9]
    DO T T, CHEN Y, NGUYEN D T, et al. Distributed Compressed Video Sensing[C]//2009 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009: 1393-1396.
    [10]
    MUN S, FOWLER J E. Block compressed sensing of images using directional transforms[C]//2009 16th IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009: 3021-3024.
    [11]
    MUN S, FOWLER J E. Residual reconstruction for block-based compressed sensing of video[C]//2011 Data Compression Conference. Snowbird, UT, USA: IEEE, 2011: 183-192.
    [12]
    练秋生, 田天, 陈书贞, 等. 基于变采样率的多假设预测分块视频压缩感知[J]. 电子与信息报,2013,35(1):203-208.

    LIAN Qiusheng, TIAN Tian, CHEN Shuzhen, et al. Block compressed sensing of video based on variable sampling rates and multihypothesis predictions[J]. Journal of Electronics & Information Technology,2013,35(1):203-208.
    [13]
    王忠良, 冯燕, 肖华, 等. 高光谱图像的分布式压缩感知成像与重构[J]. 光学精密工程,2015,23(4):1131-1137. doi: 10.3788/OPE.20152304.1131

    WANG Zhongliang, FENG Yan, XIAO Hua, et al. Distributed compressive sensing imaging and reconstruction of hyperspectral imager[J]. Optics and Precision Engineering,2015,23(4):1131-1137. doi: 10.3788/OPE.20152304.1131
    [14]
    DENG L, ZHENG Y, JIA P, et al. Adaptively group based on the first joint sparsity models distributed compressive sensing of hyperspectral image[C]//2017 6th International Conference on Computer Science and Network Technology. Dalian, China: IEEE, 2017: 429-434.
    [15]
    张娜, 王璐, 程军娜, 等. 基于分布式压缩感知的自适应距离选通三维成像[J]. 东北大学学报(自然科版),2021,42(4):516-523.

    ZHANG Na, WANG Lu, CHENG Junna, er al. Adaptive Range-Gated 3D Imaging Based on Distributed Compressed Sensing[J]. Journal of Northeastern University (Natural Science),2021,42(4):516-523.
    [16]
    SUMI T, NAKAMURA I, KUROKI Y. Distributed compressed video sensing of multi-viewpoint images using ADMM[C]//2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Jeju, Korea: IEEE, 2016: 1-5.
    [17]
    PIAO Y, ZHANG M, SHIN D, et al. Three-dimensional imaging and visualization using off-axially distributed image sensing[J]. Optics Letters,2013,38(16):3162-3164. doi: 10.1364/OL.38.003162
    [18]
    TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12):4655-4666. doi: 10.1109/TIT.2007.909108
    [19]
    李英, 尹丽菊, 申晋, 等. 微光成像实验平台的光路设计[J]. 实验室研究与探索,2019,38(12):75-78. doi: 10.3969/j.issn.1006-7167.2019.12.018

    LI Ying, LIN Liju, SHEN Jin, et al. Optical Path design of low-light-level imaging experimental platform[J]. Research and Exploration in Laboratory,2019,38(12):75-78. doi: 10.3969/j.issn.1006-7167.2019.12.018
    [20]
    崔平, 倪林. 分布式压缩感知联合重构算法[J]. 红外与激光工程,2015,44(12):3825-3830. doi: 10.3969/j.issn.1007-2276.2015.12.055

    CUI Ping, NI Lin. Joint reconstruction algorithm for distributed compressed sensing[J]. Infrared and Laser Engineering,2015,44(12):3825-3830. doi: 10.3969/j.issn.1007-2276.2015.12.055
    [21]
    梁漠杨. 图像的采样率自适应分块压缩感知算法研究[D]. 西安: 西安电子科技大学, 2019.

    LIANG Moyang. Research on sampling rate adaptive block compressed sensing algorithms for image[D]. Xi'an: Xidian University, 2019.
  • Related Articles

    [1]LIU Junkai, DENG Xuan, YANG Kaizhi, LUO Qiuyan, NIU Lihong, ZHANG Jingjin, LIU Jinyuan, CAI Houzhi, XIANG Lijuan. Simulation of compressed ultrafast imaging system based on streak tube[J]. Journal of Applied Optics, 2024, 45(2): 385-390. DOI: 10.5768/JAO202445.0202005
    [2]FU Tai, CHEN Aishuai, HU Lei, GUI Jinbin, WU Jiaxue, WANG Xiaoshi, XU Luxin. Comparison of hologram compression coding based on wavelet transform[J]. Journal of Applied Optics, 2024, 45(1): 99-106. DOI: 10.5768/JAO202445.0102004
    [3]YU Haibin, CHEN Beixi, PAN Zhifeng, REN Weifeng, ZHANG Honggang. Arrangement of microlens and image restoration technology of photon integrated interferometric imaging system[J]. Journal of Applied Optics, 2022, 43(2): 213-220. DOI: 10.5768/JAO202243.0201005
    [4]WU Xiaonan, ZHANG Rui, WANG Zhibin, CHEN Zhuangzhuang. Research on compressed sensing spectral reconstruction based on Fabry-Perot micro-array[J]. Journal of Applied Optics, 2021, 42(3): 436-442. DOI: 10.5768/JAO202142.0301010
    [5]LIU Xiaomin, MA Zhibang, WANG Qiancheng, DU Mengzhu, ZHU Yunfei, MA Fengying, LIANG Erjun. Compression light field reconstruction and depth estimation[J]. Journal of Applied Optics, 2019, 40(2): 179-185. DOI: 10.5768/JAO201940.0201001
    [6]Cao Li, Zhong Shun-cong, Zhang Tao, Shen Yao-chun. Automatic single-point imaging system based on compressive sensing technique[J]. Journal of Applied Optics, 2016, 37(1): 29-38. DOI: 10.5768/JAO201637.0101006
    [7]LI Ji. Image compression used improved error back-propagation neural network[J]. Journal of Applied Optics, 2013, 34(6): 974-979.
    [8]XIAO Long-long, LIU Kun, HAN Da-peng, LIU Ji-ying. Application of compressed sensing in optical imaging[J]. Journal of Applied Optics, 2012, 33(1): 71-77.
    [9]MA Dong-mei, MA Cai-wen, BAI Yu-long. Modified listless 3DSPITH with ROI for hyperspectral image compression[J]. Journal of Applied Optics, 2011, 32(3): 446-451.
    [10]ZHAO Mi-yang, CHEN Wei-dong, LU Xiao-yan. Improvement of image compressing algorithm based on SPIHT[J]. Journal of Applied Optics, 2007, 28(4): 388-391.
  • Cited by

    Periodical cited type(3)

    1. 刘飞,太智超,张敏洁,相萌,于纯,邵晓鹏. 基于天塞主镜的多尺度长焦成像系统设计. 航空兵器. 2024(01): 111-116 .
    2. 刘飞,吴晓琴,赵琳,段景博,李江勇,邵晓鹏. 广域高分辨率计算光学成像系统研究进展. 激光与光电子学进展. 2021(18): 10-35+438+3 .
    3. 郭智元,李建聪,陈太喜,伍雁雄. 单中心超广角手机镜头设计. 激光与光电子学进展. 2020(07): 277-283 .

    Other cited types(6)

Catalog

    Article views (201) PDF downloads (40) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return