Zhu Yuan-yuan, Gao Jiao-bo, Gao Ze-dong, Wu Jiang-hui, Meng He-min. Fusion and vision algorithm of spectral data based on mapping-evaluating-optimizing methods within multi-section[J]. Journal of Applied Optics, 2015, 36(5): 728-734. DOI: 10.5768/JAO201536.0502001
Citation: Zhu Yuan-yuan, Gao Jiao-bo, Gao Ze-dong, Wu Jiang-hui, Meng He-min. Fusion and vision algorithm of spectral data based on mapping-evaluating-optimizing methods within multi-section[J]. Journal of Applied Optics, 2015, 36(5): 728-734. DOI: 10.5768/JAO201536.0502001

Fusion and vision algorithm of spectral data based on mapping-evaluating-optimizing methods within multi-section

More Information
  • Color vision of spectral data after reducing dimension and redundancy was researched. The traditional mapping method, cutting or compressing data into the range between 0 and 1, can always lead to loss of the fusion image details. A novel fusion and vision algorithm of spectral data was presented, based on the shifting-mapping-evaluating-optimizing way within multi-section. The first 3 principal component values were achieved by principal component transform (PCT) of the spectral data cube, and assigned respectively to white-black, red-green and yellow-blue channels of opponent color space. The values of standard red-green-blue (sRGB) color space were transformed from opponent color space, and the sRGB values were divided into several sections, moved to the range of 0 to 1 and mapped to 8bit RGB digital code values. The single item evaluations of standard deviation, entropy, average gradient were calculated from 8bit RGB. The comprehensive evaluation values were got from all of the single item evaluation after finishing the process of moving, mapping and single item evaluation. The fusion image was mapped at the section with maximum comprehensive evaluation. The results show that the fusion image can ensure the images energy, information and definition, which is useful for manual distinguish and judge rapidly.
  • [1]Bratkova M, Boulos S, Shirley P. oRGB: A practical opponent color space for computer graphics[J]. IEEE Computer Graphics and Applications, 2009, 29(1): 42-55.
    [2]Johnson G M, Song X, Montag E D, et al. Derivation of a color space for image color difference measurement[J]. Color Research and Application, 2010, 35(6): 387-400.
    [3]Reinhard E, Ashikhmin M, Gooch B, et al. Color transfer between images[J]. IEEE Computer Graphics and Applications, 2001, 21(5): 2-9.
    [4]Livitz G, Yazdanbakhsh A, Eskew R T, et al. Perceiving opponent hues in color induction displays[J]. Seeing and Perceiving, 2011, 24(1):1-17.
    [5]Tyo J S,Konsolakis A, Diersen D I.Richard christopher olsen:principal-components-based display strategy for spectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 1-12.
    [6]Stokes M, Anderson M. Chandrasekars, et al. A standard default color space for the internet: sRCB[EB/OL]. http://www.color.org/sRGB.xalter. [1996-11-5].version:1-10.
    [7]Fairchild M D. Color appearance models[M]. 3nd ed. West Sussex: John Wiley & Sons, 2013.
    [8]Achalakul T, Taylor S. A concurrent spectral-screening PCT algorithm for remote sensing application[J]. Journal of Information Fusion, 2000,(1/2): 89-97.
    [9]Chen Dake. Fusion algorithm of multispectral and panchromatic images[D]. Jilin: Jilin University,2010.
    陈大可. 多光谱与全色图像融合方法的研究[D]. 吉林: 吉林大学, 2010.
    [10]Yang Fanglin, Guo Hongyang, Yang Fengbao. Study of evaluation methods on effect of pixel-level image fusion[J]. Journal of Test And Measurement Technology, 2002, 16(4): 276-279.
    阳方林, 郭红阳, 杨风暴. 像素级图像融合效果的评价方法研究[J]. 测试技术学报, 2002, 16(4): 276-279.
    [11]Zhang Mingxuan, Gao Jiaobo, Meng Hemin, et al. Zoom-FFT based on Fourier transform spectroscopy[J]. Journal of Applied Optics, 2013, 34(3): 452-456.
    张茗璇, 高教波, 孟合民, 等. 基于傅里叶变换光谱技术的Zoom-FFT算法研究[J]. 应用光学,2013,34(3): 452-456.
    [12]Li Yu, Gao Jiaobo, Meng Hemin, et al. Fast inversion techniques of inteferogram imaging spectrum base on CUDA[J]. Journal of Applied Optics, 2014,35(3): 414-419.
    李宇, 高教波, 孟合民, 等. 基于统一计算设备架构的干涉成像光谱快速反演技术研究[J]. 应用光学,2014,35(3): 414-419.
  • Related Articles

    [1]TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004
    [2]ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001
    [3]WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004
    [4]SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002
    [5]LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002
    [6]YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001
    [7]CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199.
    [8]WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364.
    [9]GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201.
    [10]TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55.
  • Cited by

    Periodical cited type(21)

    1. 赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
    2. 王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
    3. 李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
    4. 胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
    5. 何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
    6. 刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
    7. 冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
    8. 李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
    9. 王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
    10. 张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
    11. 陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
    12. 王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 . 本站查看
    13. 顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
    14. 胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
    15. 王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
    16. 张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
    17. 蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 . 本站查看
    18. 曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 . 本站查看
    19. 王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 . 本站查看
    20. 丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
    21. 张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 . 本站查看

    Other cited types(24)

Catalog

    Article views (1461) PDF downloads (125) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return