Citation: | Zhu Yuan-yuan, Gao Jiao-bo, Gao Ze-dong, Wu Jiang-hui, Meng He-min. Fusion and vision algorithm of spectral data based on mapping-evaluating-optimizing methods within multi-section[J]. Journal of Applied Optics, 2015, 36(5): 728-734. DOI: 10.5768/JAO201536.0502001 |
[1]Bratkova M, Boulos S, Shirley P. oRGB: A practical opponent color space for computer graphics[J]. IEEE Computer Graphics and Applications, 2009, 29(1): 42-55.
[2]Johnson G M, Song X, Montag E D, et al. Derivation of a color space for image color difference measurement[J]. Color Research and Application, 2010, 35(6): 387-400. [3]Reinhard E, Ashikhmin M, Gooch B, et al. Color transfer between images[J]. IEEE Computer Graphics and Applications, 2001, 21(5): 2-9. [4]Livitz G, Yazdanbakhsh A, Eskew R T, et al. Perceiving opponent hues in color induction displays[J]. Seeing and Perceiving, 2011, 24(1):1-17. [5]Tyo J S,Konsolakis A, Diersen D I.Richard christopher olsen:principal-components-based display strategy for spectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 1-12. [6]Stokes M, Anderson M. Chandrasekars, et al. A standard default color space for the internet: sRCB[EB/OL]. http://www.color.org/sRGB.xalter. [1996-11-5].version:1-10. [7]Fairchild M D. Color appearance models[M]. 3nd ed. West Sussex: John Wiley & Sons, 2013. [8]Achalakul T, Taylor S. A concurrent spectral-screening PCT algorithm for remote sensing application[J]. Journal of Information Fusion, 2000,(1/2): 89-97. [9]Chen Dake. Fusion algorithm of multispectral and panchromatic images[D]. Jilin: Jilin University,2010. 陈大可. 多光谱与全色图像融合方法的研究[D]. 吉林: 吉林大学, 2010. [10]Yang Fanglin, Guo Hongyang, Yang Fengbao. Study of evaluation methods on effect of pixel-level image fusion[J]. Journal of Test And Measurement Technology, 2002, 16(4): 276-279. 阳方林, 郭红阳, 杨风暴. 像素级图像融合效果的评价方法研究[J]. 测试技术学报, 2002, 16(4): 276-279. [11]Zhang Mingxuan, Gao Jiaobo, Meng Hemin, et al. Zoom-FFT based on Fourier transform spectroscopy[J]. Journal of Applied Optics, 2013, 34(3): 452-456. 张茗璇, 高教波, 孟合民, 等. 基于傅里叶变换光谱技术的Zoom-FFT算法研究[J]. 应用光学,2013,34(3): 452-456. [12]Li Yu, Gao Jiaobo, Meng Hemin, et al. Fast inversion techniques of inteferogram imaging spectrum base on CUDA[J]. Journal of Applied Optics, 2014,35(3): 414-419. 李宇, 高教波, 孟合民, 等. 基于统一计算设备架构的干涉成像光谱快速反演技术研究[J]. 应用光学,2014,35(3): 414-419. |
[1] | TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004 |
[2] | ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001 |
[3] | WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004 |
[4] | SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002 |
[5] | LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002 |
[6] | YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001 |
[7] | CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199. |
[8] | WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364. |
[9] | GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201. |
[10] | TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55. |
1. |
赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
![]() | |
2. |
王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
![]() | |
3. |
李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
![]() | |
4. |
胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
![]() | |
5. |
何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
![]() | |
6. |
刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
![]() | |
7. |
冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
![]() | |
8. |
李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
![]() | |
9. |
王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
![]() | |
10. |
张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
![]() | |
11. |
陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
![]() | |
12. |
王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 .
![]() | |
13. |
顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
![]() | |
14. |
胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
![]() | |
15. |
王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
![]() | |
16. |
张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
![]() | |
17. |
蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 .
![]() | |
18. |
曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 .
![]() | |
19. |
王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 .
![]() | |
20. |
丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
![]() | |
21. |
张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 .
![]() |