Wan Xun, Xie Liangping. Temperature field analysis and structure redesign of fiber optic gyroscopeWan Xun, Xie Liangping[J]. Journal of Applied Optics, 2016, 37(3): 353-358. DOI: 10.5768/JAO201637.0301006
Citation: Wan Xun, Xie Liangping. Temperature field analysis and structure redesign of fiber optic gyroscopeWan Xun, Xie Liangping[J]. Journal of Applied Optics, 2016, 37(3): 353-358. DOI: 10.5768/JAO201637.0301006

Temperature field analysis and structure redesign of fiber optic gyroscopeWan Xun, Xie Liangping

More Information
  • Received Date: December 22, 2015
  • Revised Date: March 02, 2016
  • The thermal element model of fiber coil was built based on the discrete mathematics formulae of the Shupe error in the fiber optic gyroscope (FOG). The transient thermal behavior and the steadystate thermal behavior were analyzed by this element model. According to these results, the reasons how the asymmetrical temperature field have an impact on bias error were found. The optimized structure of FOG shell, which has an inner of magnetically soft alloy and a outer of ultralumin , was designed, based on the analysis and emulation of the temperature field to decrease temperature grads of coil. The optimized thickness of the inner is 0.8 mm. The optimized thickness of the outer is 1.5 mm. It can improve the thermal symmetry of the fiber ring. The temperature changes of coil decreases by 1.8 ℃, and the difference in temperature of coil decreases by 0.68 ℃ in the temperaturefall period by experiments. Compared with the results of the experimentation, we approved the redesigned structure which can improve the temperature distributing and reduce the temperature spatiotemporal change rate of FOG coil.
  • [1]Shupe D M.Thermally induced nonreciprocity in the fiberoptic interferometer[J].Appl.Opt.,1980,19(5):654 655.
    [2]Dyott R B.Reduction of the Shupe effect in fiber optic gyros,the randomwound coi[J].Electron.Lett.,1996,32 (23):21772178.
    [3]Mohr F.Thermooptically induced bias drift in fiber optical Sagnac interferometers[J].Journal of Lightwave Technology,1996,14(1):2741.
    [4]Song Y S,Zhou S Q,Lu Z.Technical ways to improve the temperature stability of fiber optic gyros[J].SPIE,2001,4540:420423.
    [5]Yang Shiming,Tao Wenquan. Heat transfer[M]. Beijing:Advanced Education Press,2006.
     杨士铭,陶文铨. 传热学[M]. 北京:高等教育出版社,2006.
    [6]Jia Ming, Chao Daihong, Zhang Chunxi. Thermal analysis and design for fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 2008, 16(6):725729.
    贾明,晁代宏,张春熹. 光纤陀螺的热分析与热设计方法[J]. 中国惯性技术学报,2008,16(6):725729.
    [7]Jiang Xiaocun, Liu Yanhu, Huang Hao, et al. Temperature application of SLD source used in FOG[J] . Journal of Applied Optics, 2007, 28(sup):105108.
    蒋萧村, 刘延虎, 黄皓, 等. 光纤陀螺用SLD 温度适应性研究[J] . 应用光学, 2007, 28(专刊):105108.
    [8]Zhu Shusheng, Ren Jianxin, Zhang Anfeng, Random walk analysis of fiber optic gyroscope [J]. Journal of Applied Optics, 2009, 30(6):10031006.
    祝树生,任建新,张安峰.光纤陀螺随机游走分析方法研究[J].应用光学,2009, 30(6):10031006.
    [7]Wang Wei. Technology of interferometric fiber optic gyroscope [M]. Beijing:China Aerospace Press, 2010.
     王巍.干涉型光纤陀螺仪技术[M]. 北京:中国宇航出版社, 2010.
    [8]Wang Wei,Zhang Guicai. Study on temperature drift characteristics and winding techniques of sensing coil of FOG [J]. Journal of Chinese Inertial Technology, 1998(1):4245.
    王巍,张桂才.光纤陀螺敏感线圈的温度漂移特性与线圈技术研究[J].中国惯性技术学报,1998(1):4245.
    [9]Wang Xiaoning, Xu Jiadong. An analysis of the optical path’s polarization noise of fiber gyroscopes[J]. Journal of Northwestern Poly technical University , 2000, 18(3):425428.
    王小宁, 许家栋. 光纤陀螺的光路偏振噪声的理论分析[J] . 西北工业大学学报, 2000, 18(3):425428.
    [10]Bai Junqing, Zhang Ke, Wei Yuxin. Modeling and analysis of fiber optic gyroscope random drifts [J]. Journal of Chinese Inertial Technology, 2012, 10(5):621624.
     白俊卿,张科,卫育新.光纤陀螺随机漂移建模与分析[J].中国惯性技术学报, 2012, 10(5):621624.
  • Related Articles

    [1]JIANG Shizhou, DU Yanlu, WANG Huilin, WANG Mingchao, GONG Quancheng, XU Feifei. Impact analysis of flexure hinge structural characteristics on performance of fast steering mirror[J]. Journal of Applied Optics, 2022, 43(4): 626-634. DOI: 10.5768/JAO202243.0401006
    [2]SUN Baoyu, XU Jichen, GU Yan, LIN Jieqiong, LI Jie. Preparation of large-area grating structure by vibration-assisted nanoimprint[J]. Journal of Applied Optics, 2022, 43(1): 124-130. DOI: 10.5768/JAO202243.0105001
    [3]ZHANG Yan, CHEN Baogang, LI Hongwen, CAO Yuyan. Structure design and analysis of tracking frame for horizontal telescope[J]. Journal of Applied Optics, 2020, 41(5): 885-890. DOI: 10.5768/JAO202041.0501002
    [4]Zhan Qianjing, Liu Xiaoqin, Hou Zaihong, Yuan Yiqian, Wu Yi. Structure design of LED in surface mount package[J]. Journal of Applied Optics, 2018, 39(4): 556-562. DOI: 10.5768/JAO201839.0405001
    [5]Wang Xiaofeng, Shi Yan, Zhuang Yi, Wang Shiyu. Optical design of zoom structured light imaging system[J]. Journal of Applied Optics, 2018, 39(1): 22-27. DOI: 10.5768/JAO201839.0101004
    [6]Yao Min. Measurement method for video probe based on line-structured light[J]. Journal of Applied Optics, 2016, 37(1): 91-95. DOI: 10.5768/JAO201637.0103004
    [7]ZHANG Gong-xuan, LI Jing, JIAO Yang. ANSYS simulation of laser cutting ZnO nanowires[J]. Journal of Applied Optics, 2011, 32(6): 1245-1250.
    [8]ZHANG Xiao-hu, ZHOU Xiang, ZHOU Jian, SHANG Yang, YU Qi-feng. Design and realization of videometric system for structural displacement measurement[J]. Journal of Applied Optics, 2009, 30(4): 622-625.
    [9]CHENG Gang, CHEN Fang-bin, YUAN Xiao-min, LI Guang-liang, JIANG Tao. Simulation and analysis of thermal deformation for optical elements based on Ansys[J]. Journal of Applied Optics, 2008, 29(5): 697-700.
    [10]LI Long-kui, SU Junhong, LIANG Hong-jun. Twodimension compatible magneticfield analysis based on ANSYS[J]. Journal of Applied Optics, 2005, 26(6): 35-37.
  • Cited by

    Periodical cited type(6)

    1. 朱纬,王敏林,董雪明. 基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术. 电子测量技术. 2024(08): 189-194 .
    2. 张东波,汪立新,李灿. 光纤环多极对称绕法对Shupe误差抑制效果仿真分析. 北京航空航天大学学报. 2023(07): 1715-1721 .
    3. 王刚,万洵,崔志超,谢良平. 基于动态温控的光纤陀螺高温工作控制方案. 应用光学. 2023(05): 1153-1156 . 本站查看
    4. 吴雨萌,胡斌,毕聪志,孙桂林,雷明. 光纤环非互易相位误差尾纤补偿方法研究. 导航定位与授时. 2022(04): 149-155 .
    5. 周闻青,费宇明,洪桂杰,应光耀,叶欣. 高精度光纤陀螺零位误差的磁温特性研究. 应用光学. 2020(01): 220-227 . 本站查看
    6. 黄迟航,王斌华,胡桥,孔军,陈平. 陀螺光纤内的光纤环胶接固定方式分析. 机械研究与应用. 2020(06): 64-66+70 .

    Other cited types(4)

Catalog

    Article views (1416) PDF downloads (82) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return