Citation: | SUN Baoyu, XU Jichen, GU Yan, LIN Jieqiong, LI Jie. Preparation of large-area grating structure by vibration-assisted nanoimprint[J]. Journal of Applied Optics, 2022, 43(1): 124-130. DOI: 10.5768/JAO202243.0105001 |
In order to solve the problems of low filling rate and easy deformation of imprinting patterns in the process of nanoimprint, a new vibration-assisted nanoimprint method was proposed. In the process of imprinting, the transverse vibration was applied to the imprinting adhesive, which increased the imprinting force and improved the filling rate. Using finite difference time domain (FDTD) method, different grating structures were numerically simulated in the wavelength range of 300 nm~1000 nm, and the influence rule of grating structure parameters on its absorptivity was obtained. Finally, the vibration-assisted nanoimprint experiment was carried out on the vibration-assisted device. The experimental results show that compared with the traditional nanoimprint technology, the filling rate of imprinting adhesive is increased by 30%, the surface morphology of microstructure after imprinting is improved and the defects are reduced.
[1] |
王晨光, 杨江涛, 康宁, 等. PDMS梯度光栅结构制备技术研究[J]. 光谱学与光谱分析,2015,35(12):3529-3533.
WANG Chenguang, YANG Jiangtao, KANG Ning, et al. The study of PDMS grating structure gradient preparation techniques[J]. Spectroscopy and Spectral Analysis,2015,35(12):3529-3533.
|
[2] |
SIVASUBRAMANIAM S, ALKAISI M M. Inverted nanopyramid texturing for silicon solar cells using interference lithography[J]. Microelectronic Engineering,2014,119:146-150. doi: 10.1016/j.mee.2014.04.004
|
[3] |
AMALATHAS A P, ALKAISI M M. Periodic upright nanopyramid fabricated by ultraviolet curable nanoimprint lithography for thin film solar cells[J]. International Journal of Nanotechnology,2017,14(1/2/3/4/5/6):3-14. doi: 10.1504/IJNT.2017.082435
|
[4] |
葛少博, 刘卫国, 周顺, 等. 薄膜光学锥形光栅的制备与光学特性分析[J]. 应用光学,2019,40(2):342-348.
GE Shaobo, LIU Weiguo, ZHOU Shun, et al. Fabrication and optical properties analyses of thin film optical tapered grating[J]. Journal of Applied Optics,2019,40(2):342-348.
|
[5] |
LAN H B, Large-area nanoimprint lithography and applications[M]. London:IntechOpen Limited 2018: 43-68.
|
[6] |
VAN SCHOOT J, SCHIFT H. Next-generation lithography – an outlook on EUV projection and nanoimprint[J]. Advanced Optical Technologies,2017,6(3/4):159-162.
|
[7] |
兰红波, 刘明杨, 郭良乐, 等. 面向大面积微结构批量化制造的复合压印光刻[J]. 光学 精密工程,2019,27(7):1516-1527. doi: 10.3788/OPE.20192707.1516
LAN Hongbo, LIU Mingyang, GUO Liangle, et al. Composite imprint lithography for mass producing large-area microstructures[J]. Optics and Precision Engineering,2019,27(7):1516-1527. doi: 10.3788/OPE.20192707.1516
|
[8] |
NGUYEN L, WU M H, HUNG C. Finite element analysis of ultrasonic vibration-assisted microstructure hot glass embossing process[J]. Australian Journal of Mechanical Engineering,2019,17(3):199-208. doi: 10.1080/14484846.2017.1339300
|
[9] |
PARK J H, LEE K Y, PARK K. Coupled numerical analysis to investigate the heating mechanism of ultrasonic imprint lithography[J]. Ultrasonics,2015,60:96-102. doi: 10.1016/j.ultras.2015.02.017
|
[10] |
ZHENG X, WANG Q, ZHANG R, et al. Effects of aspect ratio and metal layer thickness on demoulding of metal/polymer bilayer gratings during nanoimprinting[J]. Scientific Reports,2018,8(1):12720. doi: 10.1038/s41598-018-31194-y
|
[11] |
LIN C H, CHEN R. Effects of mold geometries and imprinted polymer resist thickness on ultrasonic nanoimprint lithography[J]. Journal of Micromechanics and Microengineering,2007,17(7):1220. doi: 10.1088/0960-1317/17/7/002
|
[12] |
CHEN S, GU Y, LIN J, et al. Study on vibration-assisted thermal nanoimprint lithography[J]. Applied Nanoscience,2020,10(2):3315-3324.
|
[13] |
GU Y, CHEN S, LIN J, et al. High-quality efficient anti-reflection nanopillar structures layer prepared by a new type vibration-assisted UV nanoimprint lithography[J]. Journal of Manufacturing Processes,2021,61:461-472.
|
[14] |
BARCHIESI D, GROSGES T. Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth[J]. Journal of Nanophotonics,2014,8(1):83-97.
|
[15] |
YOUNG, T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805,95:65-87. doi: 10.1098/rstl.1805.0005
|
[16] |
LAPLACE P S. Traité de mécanique céleste[M]. Paris: De L'Imprimerie de Crapelet, 1799 : 1823-1827
|
[17] |
GAUSS C F. Principia generalia theoriae figurae fluidorum in statu aequilibrii[M]. Berlin:Springer, 1877: 29-77.
|
[18] |
CAI J, LI W D. Hydrodynamic and solid mechanics analysis of capillary force-induced mold deformation in sub-10 nm UV nanoimprint lithography[J]. IOP Publishing,2018,1811:05103.
|
[19] |
李阳, 徐维, 王忆. 紫外纳米压印OLED衬底微结构的制备技术[J]. 微纳电子技术,2013,50(7):462-465. doi: 10.3969/j.issn.1671-4776.2013.07.011
LI Yang, XU Wei, WANG Yi. Fabrication technology of the OLED substrate microstructure by UV nanoimprinting[J]. Micronanoelectronic Technology,2013,50(7):462-465. doi: 10.3969/j.issn.1671-4776.2013.07.011
|
[1] | LIU Jiamei, CAI Changlong, FAN Jiaqi, YAO Haojie, LI Shijie, ZHANG Jin, LIANG Haifeng. Optical structure symmetric imaging spectrometer based on single grating spectroscopy[J]. Journal of Applied Optics, 2025, 46(1): 71-79. DOI: 10.5768/JAO202546.0101006 |
[2] | GE Shaobo, LIU Weiguo, ZHOU Shun, LI Shijie, YANG Pengfei. Fabrication and optical properties analyses of thin film optical tapered grating[J]. Journal of Applied Optics, 2019, 40(2): 342-348. DOI: 10.5768/JAO201940.0208001 |
[3] | Yu Xiuming, Ding Yunfei, Chen Junda, Zhang Xinmeng, Ma Wanzhuo, Sun Zhiwen, Jiang Ziqi, Wang Tianshu. High repetition-rate mode-locked fiber laser and generation of supercontinuum[J]. Journal of Applied Optics, 2018, 39(6): 916-920. DOI: 10.5768/JAO201839.0607001 |
[4] | Gao Aihua, Wang Shaogang, Yan Lirong. Highprecision laser absorption rate measuring device[J]. Journal of Applied Optics, 2016, 37(2): 303-307. DOI: 10.5768/JAO201637.0207001 |
[5] | Ma De-yue, Li Xiao-xia, Guo Yu-xiang, Zhao Ji-jin. Measurement of screening rate and its distribution of infrared smoke screen[J]. Journal of Applied Optics, 2014, 35(4): 707-712. |
[6] | FU Jie, SHEN Zhao-guo, CHENG Jian-xin, TANG Gang-feng, MAO Xin, YANG Yi. Intra-cavity frequency--doubled Nd∶YVO4/LBO red laser with high repetition rate[J]. Journal of Applied Optics, 2013, 34(5): 874-877. |
[7] | FU Jie, SHEN Zhao-guo, TANG Gang-feng, MAO Xin, CHENG Jian-xin, YANG Yi. High repetition rate PPLT eye-safe laser with 1.06 μm pumping[J]. Journal of Applied Optics, 2013, 34(1): 156-160. |
[8] | ZHOU Chun-xin, HUANG Ping, ZENG Qing-ke, QIN Zi-xiong. Simulation study on the relation between the structural parameters and the transmission spectra of a long period fiber grating[J]. Journal of Applied Optics, 2010, 31(4): 632-635. |
[9] | WANG Jiang-an, ZHAO Ying-jun, WU Rong-hua, REN Xi-chuang. Influence of partially coherent beam passing through strong turbulence on bit error rate of laser communication systems[J]. Journal of Applied Optics, 2009, 30(5): 859-863. |
[10] | LIU Han-chen, WANG Qiu-ping, ZHANG Chong-hui, WANG An-xiang, JIANG Xue-fang. Investigation into parameters of grating scanning spectrometer[J]. Journal of Applied Optics, 2008, 29(4): 595-598. |
1. |
李亚红,李满,魏文浩,褚金奎,邹念育,姜珊. 基于多变量纳米线栅复合结构的可见光偏振调控. 应用光学. 2024(04): 700-708 .
![]() | |
2. |
李春燕,张亦舒,侯少杰,李春玲,李晓诚,寇生中. 传统光栅制备技术及非晶合金光栅制备研究进展. 稀有金属. 2024(12): 1766-1780 .
![]() | |
3. |
齐耀,刘子阳,侯宇田,于晓慧,杨宾. 光谱分频型PV/T系统中纳米颗粒优化分析. 应用光学. 2023(04): 699-710 .
![]() |