MA Zhan-long, LIU Jian, WANG Jun-lin. Material removal mechanism and influence factor of fluid jet polishing[J]. Journal of Applied Optics, 2011, 32(6): 1206-1211.
Citation: MA Zhan-long, LIU Jian, WANG Jun-lin. Material removal mechanism and influence factor of fluid jet polishing[J]. Journal of Applied Optics, 2011, 32(6): 1206-1211.

Material removal mechanism and influence factor of fluid jet polishing

More Information
  • Fluid dynamics simulation of fluid jet polishing material removal mechanism was studied base on the Fluent software, and the pressure, velocity and wall shear stress of the flow were analyzed. It indicates that the material removal rate is dependent on the distribution of surface shear stress, and the removal function presents W type. The influence of the entrance velocity, operation distance and abrasive concentration on the polishing result was analyzed by using orthogonal test, the result shows that the material removal rate increases with the increase of the incident velocity and abrasive concentration, it decreases as the operation distance increases, and the operation distance has a significant impact on the removal rate. This work can be used for choosing process parameters in process investigation.
  • [1]FAHNLE O W. Fluid jet polishing of optical surfaces[J]. Applied Optics, 1998, 37(28): 6671-6673.
    [2]FAHNLE O W. Fluid jet polishing: removal process analysis[J]. SPIE, 1999, 3739: 68-77.
    [3]方慧, 郭培基, 余景池. 液体喷射抛光技术去除机理的有限元分析[J]. 光学精密工程, 2006, 14(2): 218-223.
    FANG Hui, GUO Pei-ji, YU Jing-chi. Analysis of material removal mechanism in fluid jet polishing by finite element method[J]. Optics and Precision Engineering, 2006, 14(2): 218-223. (in Chinese with an English abstract)
    [4]方慧, 郭培基, 余景池. 液体喷射抛光时各工艺参数对材料去除量的影响[J]. 光学技术, 2004, 30(4): 440-442.
    FANG Hui, GUO Pei-ji, YU Jing-chi. Effect on material removal rate of fluid jet polishing by several parameters[J]. Optical Technique, 2004, 30(4): 440-442. (in Chinese with an English abstract)
    [5]张学成. 磁射流抛光技术研究[D]. 长沙: 国防科技大学, 2007.
    ZHANG Xue-cheng. Study on magnetorheological jet polishing technology[D]. Changsha: National University of Defense Technology, 2007. (in Chinese)
    [6]张学成, 戴一帆, 李圣怡, 等. 磁射流抛光时几种工艺参数对材料去除的影响[J]. 光学精密工程, 2006, 14(6): 1004-1008.
    ZHANG Xue-cheng, DAI Yi-fan, LI Sheng-yi, et al. Effect on material removal of magnetorheological jet polishing by several parameters[J]. Optics and Precision Engineering, 2006, 14(6): 1004-1008. (in Chinese with an English abstract)
    [7]施春燕, 袁家虎, 伍凡, 等. 射流抛光多项紊流流场的数值模拟[J]. 强激光与离子束, 2009, 21(1): 6-10.
    SHI Chun-yan, YUAN Jia-hu, WU Fan, et al. Numerical simulation of turbulent flow field in fluid jet polishing[J]. High Power Laser and Particle Beams, 2009, 21(1): 6-10. (in Chinese with an English abstract)
    [8]施春燕, 袁家虎, 伍凡, 等. 冲击角度对射流抛光中材料去除面形的影响分析[J]. 光学学报, 2010, 30(2): 513-517.
    SHI Chun-yan, YUAN Jia-hu, WU Fan, et al. Influence analysis of impact angle on material removal profile in fluid jet polishing[J]. Acta Optica Sinica, 2010, 30(2): 513-517. (in Chinese with an English abstract)
    [9]王瑞金, 张凯, 王刚. Fluent技术基础与应用实例[M]. 北京: 清华大学出版社, 2007.
    WANG Rui-jin, ZHANG Kai, WANG Gang. Technology basis and application example of Fluent[M]. Bejing: Tsinghua University Press, 2007. (in Chinese)
    [10]汪荣鑫. 数理统计[M]. 西安: 西安交通大学出版社, 1986.
    WANG Rong-xin. Mathematical statistics[M]. Xi-an: Xi-an Jiaotong University Press, 1986. (in Chinese)
  • Related Articles

    [1]DU Zibing, LI Xiaoming. Research on test and evaluation technology of airborne laser weapon[J]. Journal of Applied Optics, 2024, 45(3): 507-513. DOI: 10.5768/JAO202445.0310003
    [2]GU Shuangling, ZHANG Feng, PENG Xia, ZHAO Li. Virtual time reversal method for channel equalization in non-orthogonal multiple access optical communication systems[J]. Journal of Applied Optics, 2024, 45(2): 475-484. DOI: 10.5768/JAO202445.0208005
    [3]XI Gangyang, ZHANG Bo, ZUO Xiaozhou, WANG Zhongqiang, LIU Xin, ZHAO Hongjun. Design of multispectral optical window assembly for high and low temperature test device[J]. Journal of Applied Optics, 2023, 44(3): 661-667, 683. DOI: 10.5768/JAO202344.0305001
    [4]Deng Yong, Chen Kang, Li Jiyang. He-Ne laser nanometer ruler system based on orthogonal polarization double longitudinal mode[J]. Journal of Applied Optics, 2017, 38(2): 316-320. DOI: 10.5768/JAO201738.0207002
    [5]JIN Xiao-juan, DENG Zhi-liang. Super resolution reconstruction based on L1-norm and orthogonal gradient operator[J]. Journal of Applied Optics, 2012, 33(2): 305-312.
    [6]WANG Xiao, MAO Heng, ZHAO Da-zun. Frequency domain analysis for orthogonal polynomials based on annulus sector area[J]. Journal of Applied Optics, 2009, 30(1): 153-157.
    [7]REN Cheng, TAN Yi-dong, ZHANG Shu-lian. Semi-external cavity Nd∶YAG microchip laser with orthogonal linear polarized dual-frequency output and its application in precision angle measurement[J]. Journal of Applied Optics, 2008, 29(5): 772-776.
    [8]CHEN Li-gang, HONG Jin, QIAO Yan-li, SONG Zhi-ping, ZHANG Dong-ying, LI Wen-tao, QIU Zhen-wei. Simulation study on depolarization for imperfect orthogonal mirrors[J]. Journal of Applied Optics, 2008, 29(4): 633-638.
    [9]CHEN Lei, ZHANG En-yao, SUN Li-qun, GUO Hong. Method and apparatus of orthogonal polarization spectral microcirculation imaging[J]. Journal of Applied Optics, 2007, 28(2): 169-172.
    [10]AN Xiao-qiang, QIU Kun, ZHANG Chong-fu. Design solution for construction of strictlyoptimized (ν, k, 1) optical orthogonal codes[J]. Journal of Applied Optics, 2006, 27(4): 268-273.

Catalog

    Article views (3244) PDF downloads (553) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return