Citation: | XI Gangyang, ZHANG Bo, ZUO Xiaozhou, WANG Zhongqiang, LIU Xin, ZHAO Hongjun. Design of multispectral optical window assembly for high and low temperature test device[J]. Journal of Applied Optics, 2023, 44(3): 661-667, 683. DOI: 10.5768/JAO202344.0305001 |
The comprehensive detector of the photoelectric system outside the box is an important accessory of the high and low temperature performance test device of the photoelectric imaging system, and the multispectral optical window is an interface between the high and low temperature box and the external target simulator. According to the application requirements and material analysis results, the multispectral ZnS was selected as the optical window material. Through the heat conduction theory, the low-temperature service state of the optical window assembly was analyzed, focusing on the influence of the window assembly heating under the low-temperature condition on the surface shape of the window assembly, and the structural form to realize the micro-stress assembly and the design scheme to solve the frost and fog of the window assembly under the low-temperature condition were put forward. According to the extraction, processing and data fitting of finite element calculation results by sigfit and the analysis of caliber by CODE V, the root-mean-square (RMS) value of wave aberration of Φ 310 mm window assembly in the temperature range is better than λ/15. The above contents all meet the optical performance requirements of window assembly. And finally, it was verified through the physical prototype. The experimental results show that the structural design scheme of multispectral optical window assembly not only meets the requirements of multi band usage, but also meets the requirements of low-temperature defrosting and defogging, and ensures the optical performance requirements under high and low temperature conditions.
[1] |
皮桂英, 石庆国. 国内外空间环境模拟试验条件分析[J]. 环境技术,2013(4):41-42. doi: 10.3969/j.issn.1004-7204.2013.04.013
PI Guiying, SHI Qingguo. Analysis on domestic and international space environment simulation test conditions[J]. Environmental Technology,2013(4):41-42. doi: 10.3969/j.issn.1004-7204.2013.04.013
|
[2] |
王珊珊. 一种用于航空平台的多光谱光学窗口: CN 108240861 A[S]. 2018-07-03.
WANG Shanshan. A multispectral optical window for aviation platform: CN 108240861 A[S]. 2018-07-03.
|
[3] |
惠刚阳, 杨海成, 姜峰, 等, 潜望式瞄准镜中消像旋棱镜的装调工艺技术[J]. 应用光学, 2013, 34(4): 700-705.
XI Gangyang, YANG Haicheng, JIANG Feng, et al. Alignment technology of offsetting image rotation prism in periscopic sight[J]. Journal of Applied Optics, 2013, 34(4): 700-705.
|
[4] |
黎明, 吴清文, 余飞. 基于热光学分析的光学窗口玻璃厚度的优化[J]. 光学学报,2010,30(1):210-213. doi: 10.3788/AOS20103001.0210
LI Ming, WU Qingwen, YU Fei. Optimization of optical window glass thickness based on the thermal optical analysis[J]. Acta Optica Sinaica,2010,30(1):210-213. doi: 10.3788/AOS20103001.0210
|
[5] |
李延伟, 张洪文, 詹磊, 等. 高空环境对航空遥感器光学窗口的影响[J]. 激光与红外,2012,42(9):1035-1039. doi: 10.3969/j.issn.1001-5078.2012.09.016
LI Yanwei, ZHANG Hongwen, ZHAN Lei, et al. Influence of high altude environment on optical window in aerial remote sensor[J]. Laser & Infrared,2012,42(9):1035-1039. doi: 10.3969/j.issn.1001-5078.2012.09.016
|
[6] |
赵立新. 空间相机光学窗口的热光学评价[J]. 光学学报,1988,18(10):1440-1444.
ZHAO Lixin. Thermal-optical evaluation to optical windows of space camera[J]. Acta Optica Sinaica,1988,18(10):1440-1444.
|
[7] |
陈华, 史振广, 隋永新, 等. 干涉检测中环境温度引起的镜面变形分析[J]. 光学学报,2011,31(1):135-139.
CHEN Hua, SHI Zhenguang, SUI Yongxin, et al. Thermal deformation analysis of optical surface caused by environmental temperature during intrferometric testing[J]. Acta Optica Sinaica,2011,31(1):135-139.
|
[8] |
廖志波, 焦文春, 伏瑞敏. 空间相机光学窗口热光学性能的仿真分析[J]. 应用光学,2011,32(5):407-410. doi: 10.3969/j.issn.1002-2082.2011.03.006
LIAO Zhibo, JIAO Wenchun, FU Ruimin. Thermal optics property simulation of optical window for remote sensing[J]. Journal of Applied Optics,2011,32(5):407-410. doi: 10.3969/j.issn.1002-2082.2011.03.006
|
[9] |
刘囿辰, 马国鹭, 赵涌, 等. 组合式热动态载荷光学窗口的光学特性研究[J]. 应用光学,2021,42(6):1122-1132. doi: 10.5768/JAO202142.0605003
LIU Youchen, MA Guolu, ZHAO Yong. Optical properties of combined dynamic thermal dynamic loading optical window[J]. Journal of Applied Optics,2021,42(6):1122-1132. doi: 10.5768/JAO202142.0605003
|
[10] |
方煜, 相里斌, 吕群波, 等. 光学窗口厚度设计及形变对相机性能影响[J]. 光学学报,2013,33(4):220-225.
FANG Yu, XIANG Libin, LYU Qunbo. Design of optical window thickness and influence of its deformation on multi-spectral camera’s optical performance[J]. Acta Optica Sinica,2013,33(4):220-225.
|
[11] |
PEARSON E, STEPP L. Response of large optical mirror to thermal distributions[J]. SPIE,1987,748:215-228.
|
[12] |
HARNED N, HARPED R, MELUGIN R. Alignment and evaluation of the cryogenic corrected infrared astronomical satellite (IRAS) telescope[J]. Opt. Eng.,1981,20(2):202195.
|
[13] |
PEPI J W, BARNES W P. Thermal distortion of a thin low ex-pansion fused silica mirror[J]. SPIE,1983,450:40-49.
|
[14] |
杨佳文, 黄巧林, 韩友民. Zernike 多项式在拟合光学表面面形中的应用及仿真[J]. 航天返回与遥感,2010,31(5):49-55. doi: 10.3969/j.issn.1009-8518.2010.05.009
YANG Jiawen, HUANG Qiaolin, HAN Youmin. Application and simulation in fitting optical surface with Zernike polynomial[J]. Spacecraft Recovery Remote Sensing,2010,31(5):49-55. doi: 10.3969/j.issn.1009-8518.2010.05.009
|
[15] |
单宝忠, 王淑岩, 牛憨笨, 等. Zernike 多项式拟合方法及应用[J]. 光学精密工程,2012,10(3):318-323.
SHAN Baozhong, WANG Shuyan, NIU Hanben, et al. Zernike polynomial fitting method and its application[J]. Optics and Precision Engineering,2012,10(3):318-323.
|
1. |
倪凯凯. 设备用热态试验装置设计. 造纸装备及材料. 2023(11): 34-36 .
![]() |