GU Shuangling, ZHANG Feng, PENG Xia, ZHAO Li. Virtual time reversal method for channel equalization in non-orthogonal multiple access optical communication systems[J]. Journal of Applied Optics, 2024, 45(2): 475-484. DOI: 10.5768/JAO202445.0208005
Citation: GU Shuangling, ZHANG Feng, PENG Xia, ZHAO Li. Virtual time reversal method for channel equalization in non-orthogonal multiple access optical communication systems[J]. Journal of Applied Optics, 2024, 45(2): 475-484. DOI: 10.5768/JAO202445.0208005

Virtual time reversal method for channel equalization in non-orthogonal multiple access optical communication systems

More Information
  • Received Date: April 16, 2023
  • Revised Date: June 27, 2023
  • Available Online: February 04, 2024
  • Indoor non-orthogonal multiple access (NOMA) visible light communications (VLC) systems have the potential to enable high-rate multi-user communication. Nonetheless, the multipath effect may lead to a substantial reduction in communication reliability and user fairness. Therefore, a virtual time reversal mirror (VTRM) technology for NOMA-VLC channel equalization to eliminate the influence of multipath effect on communication performance was proposed. Initially, the indoor NOMA-VLC system model and the characteristics of communication optical links in multi-user scenarios were analyzed. To leverage the sparsity characteristics of optical links gains, the sparsity adaptive matching pursuit (SAMP) algorithm was adopted to estimate the channel impulse response (CIR) of NOMA-VLC systems. On this basis, the VTRM method was introduced to equalize the channel of NOMA-VLC, reducing the impact of channel fading through the spatio-temporal focusing characteristics of VTRM, and the received signal was reconstructed to suppress the multipath effect. The theoretical analysis and simulation results show that the NOMA-VLC system equalized by the proposed algorithm improves the performance of user 1 by 4.4 dB, user 2 by 5.7 dB, improves the average signal-to-noise ratio (SNR) of the two users by 5.05 dB, and reduces the performance difference between users from 1.6 dB to 0.5 dB, when the forward error correction (FEC) bit error rate (BER) threshold is met. Overall, this method provides an effective approach for NOMA-VLC channel equalization.

  • [1]
    张峰, 梁渊博, 赵黎, 等. 基于非正交多址的室内可见光通信系统性能优化方法[J]. 红外与激光工程,2021,50(11):311-317.

    ZHANG Feng, LIANG Yuanbo, ZHAO Li, et al. Performance optimization method of indoor visible light communication system based on non-orthogonal multiple access[J]. Infrared and Laser Engineering,2021,50(11):311-317.
    [2]
    BARIAH L, MUHAIDAT S, AL-QUTAYRI M, et al. Deep Q-learning-based resource allocation in NOMA visible light communications[J]. IEEE Open Journal of the Communications Society,2022,3:2284-2297. doi: 10.1109/OJCOMS.2022.3219014
    [3]
    DOGRA T, BHARTI M R. User pairing and power allocation strategies for downlink NOMA-based VLC systems: an overview[J]. AEU-International Journal of Electronics and Communications,2022,149:154184.
    [4]
    XU B, MIN T, Yue CP. Design of PAM-8 VLC transceiver system employing neural network-based FFE and post-equalization[J]. Electronics,2022,11(23):3908. doi: 10.3390/electronics11233908
    [5]
    ZHANG L, JIANG R, TANG X, et al. A simplified post equalizer for mitigating the nonlinear distortion in SiPM based OFDM-VLC system[J]. IEEE Photonics Journal,2021,14(1):1-7.
    [6]
    BADAWI W K, El-HOSSARY M G, Aly MH. Indoor wavelet OFDM VLC-MIMO system: performance evaluation[J]. Symmetry,2021,13(2):270-1-19. doi: 10.3390/sym13020270
    [7]
    ESMAIEL H, QASEM Z, SUN H, et al. Wireless information and power transfer for underwater acoustic time-reversed NOMA[J]. IET Communications,2020,14(19):3394-3403. doi: 10.1049/iet-com.2020.0053
    [8]
    WU M, WU F, YANG K, et al. Virtual time-reversal mirror M-ary spread-spectrum method for underwater acoustic communications[C]. Global Oceans 2020: Singapore–US Gulf Coast. Singapore: IEEE, 2020: 1-5.
    [9]
    ZUBERI H H, LIU S, SOHAIL M Z, et al. Multi-user underwater acoustic communication using binary phase-coded hyperbolic frequency-modulated signals[J]. IET Communications,2022,16(12):1415-1427. doi: 10.1049/cmu2.12407
    [10]
    LIU S, ZUBERI H H, LOU Y, et al. M-ary nonlinear sine chirp spread spectrum for underwater acoustic communication based on virtual time-reversal mirror method[J]. EURASIP Journal on Wireless Communications and Networking,2021,2021(1):1-20. doi: 10.1186/s13638-020-01861-8
    [11]
    赵黎, 董航航, 张峰. 基于 LWT 的可见光DCO-OFDM系统[J]. 光子学报, 2021, 50(5): 129-137

    ZHAO Li, DONG Hanghang, ZHANG Feng. Visible DCO-OFDM system based on LWT[J]. Acta Pthotonica Sinica, , 2021, 50(5): 129-137.
    [12]
    LIAN J, GAO Y, WU P, et al. Indoor MIMO VLC systems using optical orthogonal frequency division multiple access[J]. Optics Communications,2021,485:126728. doi: 10.1016/j.optcom.2020.126728
    [13]
    贾科军, 郝莉, 白利军, 等. 基于非正交多址接入的室内可见光通信系统[J]. 光学学报, 2017, 37(8): 77-87.

    JIA Kejun, HAO Li , BAI Li Jun, Indoor visible light communication system based on non-orthogonal multiple access[J]. Acta Optica Sinica, 2016, 36(7): 57-68.
    [14]
    尹艳玲, 乔钢, 刘凇佐. 基于虚拟时间反转镜的水声OFDM信道均衡[J]. 通信学报,2015,36(1):94-103.

    YIN Yanling, QIAO Gang, LIU Songzuo, et al. Underwater acoustic OFDM channel equalization based on virtual time reversal mirror[J]. Journal on Communications,2015,36(1):94-103.
    [15]
    ZHOU F, LIU B, NIE D, et al. M-ary cyclic shift keying spread spectrum underwater acoustic communications based on virtual time-reversal mirror[J]. Sensors,2019,19(16):3577. doi: 10.3390/s19163577
    [16]
    凌锦炜, 张峰, 沈波, 等. G3-PLC系统压缩感知信道估计的LS-SAMP算法[J]. 电讯技术,2023,63(10):1-8.

    LING Jinwei, ZHANG Feng, SHEN Bo, et al. LS-SAMP algorithm for compressed sensing channel estimation in G3-PLC system[J]. Telecommunication Engineering,2023,63(10):1-8.
    [17]
    CAI Y, CHEN M, DENG A, et al. Experimental demonstration of 16QAM/QPSK OFDM-NOMA VLC with LDPC codes and analog pre-equalization[J]. Applied Optics,2022,61(19):5585-5591. doi: 10.1364/AO.460839
  • Related Articles

    [1]ZHU Daixian, WU Dong, LIU Shulin, LIU Lingzhi. Disparity image feature matching algorithm based on AKAZE and adaptive local affine matching[J]. Journal of Applied Optics, 2021, 42(6): 1048-1055. DOI: 10.5768/JAO202142.0602006
    [2]YUAN Yuli, LYU Junrui, LUO Xuegang. Hyperspectral images destriping approach with weighted block sparsity regularization and non-convex low-rank penalty[J]. Journal of Applied Optics, 2021, 42(2): 283-291. DOI: 10.5768/JAO202142.0202005
    [3]ZHOU Zhe, SHEN Jianxin, HAN Peng, JIANG Junjia. Stereo matching algorithm based on Census transformation and guided filter[J]. Journal of Applied Optics, 2020, 41(1): 79-85. DOI: 10.5768/JAO202041.0102003
    [4]ZHOU Lei, MA Li. ORB feature matching optimization based on sparse optical flow method[J]. Journal of Applied Optics, 2019, 40(4): 583-588. DOI: 10.5768/JAO201940.0402001
    [5]Zhao Song, Feng Xiang. Sparse coding based spatial pyramid matching algorithm for image classification[J]. Journal of Applied Optics, 2016, 37(5): 706-711. DOI: 10.5768/JAO201637.0502006
    [6]XU Qiang, WANG Hai-yan, YANG Hai-yan, CHEN Xin, WANG Fang. Small target detecting method using dual-craft IRST image matching and fusion[J]. Journal of Applied Optics, 2013, 34(6): 1025-1029.
    [7]YANG Xiao-xu, ZHOU Si-zhong, SHEN Hui-min, GUO Zhi-li, MA Ming. Spectral recognition based on interferogram matching[J]. Journal of Applied Optics, 2011, 32(4): 652-656.
    [8]HONG Hua-jie, YUN Ping-ping, ZHAO Chuang-she. Control method of adaptive fuzzy and PI forphotoelectric stabilization based on real-time OS[J]. Journal of Applied Optics, 2009, 30(5): 761-767.
    [9]LIU Ying, CAO Jian-zhong, XU Zhao-hui, TIAN Yan, FU Tong-tang, WANG Feng. Improvement of image matching algorithm based on gray correlation[J]. Journal of Applied Optics, 2007, 28(5): 536-540.
    [10]ZHANG Qiang, NA Yan, LI Jian-jun. Image matching based on geometric feature of edges and the correlation in frequency domain[J]. Journal of Applied Optics, 2006, 27(4): 285-288.
  • Cited by

    Periodical cited type(8)

    1. 纪海莹,王天枢,熊浩,马万卓,袁泉,孙梦茹,林鹏. 位于第三近红外窗口的平坦光纤超连续谱产生. 应用光学. 2021(03): 565-570 . 本站查看
    2. 熊浩,王天枢,纪海莹,袁泉,马万卓,林鹏,孙梦茹. 基于类噪声脉冲抽运的平坦超连续谱光源. 应用光学. 2021(04): 743-748 . 本站查看
    3. 蔡小庆,陈晓芳,云彩霞,鲁小利. 光强度对大气激光通信信道衰落的影响分析. 激光杂志. 2019(03): 105-108 .
    4. 曹树伟,杨慧玲. 高功率半导体激光通信系统的调制技术研究. 激光杂志. 2019(04): 136-139 .
    5. 李倩,王艳玲. 基于激光通信的智慧医疗信息系统. 激光杂志. 2019(05): 197-201 .
    6. 朱颖,项祖干. WDM光网络中激光通信信道节能调度. 激光杂志. 2018(06): 173-177 .
    7. 刘显著,王天枢,陈俊达,张欣梦,杨进华,姜会林. 采用QPSK调制的50 Gbit/s高速大气激光通信传输特性研究. 应用光学. 2018(05): 757-761 . 本站查看
    8. 朱居正. 无线激光通信网络任务均衡分配系统设计. 科技通报. 2017(12): 149-152 .

    Other cited types(3)

Catalog

    Article views (90) PDF downloads (29) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return