XU Yi-guang, LIU Bo, LI Yan-hong, ZHANG Cun-lin. Technologies of passive and active infrared thermal imaging[J]. Journal of Applied Optics, 2008, 29(supp): 44-48.
Citation: XU Yi-guang, LIU Bo, LI Yan-hong, ZHANG Cun-lin. Technologies of passive and active infrared thermal imaging[J]. Journal of Applied Optics, 2008, 29(supp): 44-48.

Technologies of passive and active infrared thermal imaging

More Information
  • Corresponding author:

    XU Yi-guang

  • The passive and active infrared thermal imaging technologies were analyzed based on the Stephen-Boltzmann law(W=εσT4). The passive infrared imaging technology adopts a thermal camera to receive the infrared radiation of an object, and the active infrared imaging technology, based on the equation of heat exchange, researches the interaction of variation thermal sources with medium material and geometrical structure. The active infrared imaging technology obtains the information of material homogeneity and the structure under its surface to implement the non-destructive testing and inspection by monitoring the temperature variation of material surface through flashing light, ultrasonic wave, laser, THz wave, hot blast, electric current or mechanical vibration. The applications of both technologies are compared according to their principles.
  • Related Articles

    [1]ZHU Wenjie, LING He, YANG Shoupeng. Research on compensation for positioning errors of carbody welding points based on binocular vision[J]. Journal of Applied Optics, 2021, 42(1): 79-85. DOI: 10.5768/JAO202142.0102005
    [2]CUI Enkun, TENG Yanqing, LIU Jiawei. Calibration error compensation technique of stereoscopic vision measurement system[J]. Journal of Applied Optics, 2020, 41(6): 1174-1180. DOI: 10.5768/JAO202041.0601006
    [3]SU Chengzhi, YAN Chun, WANG Fei, ZHANG Chengshuang, BAO Yanling, RUAN Yingbo. Research on error compensation method for infrared temperature measurement under laser irradiation[J]. Journal of Applied Optics, 2019, 40(6): 1084-1090. DOI: 10.5768/JAO201940.0603001
    [4]Hao Chunyan, Gao Tianyuan, Lao Dabao, Zhou Weihu, Zhu Qifan. Error analysis for large-scale planar laser scanning and compensation system[J]. Journal of Applied Optics, 2018, 39(1): 124-129. DOI: 10.5768/JAO201839.0107002
    [5]Li Liangfu, Zou Bin, Zhou Guoliang, Wang Chao, He Junfeng. Repair and error compensation method for depth image based on optimization estimation[J]. Journal of Applied Optics, 2018, 39(1): 45-50. DOI: 10.5768/JAO201839.0101008
    [6]Ye Su, Ye Yu-tang, Liu Juan-xiu, Liu Lin, Du Chun-lei. Error compensation for trim puncher based on rapid super-resolution measurement[J]. Journal of Applied Optics, 2015, 36(3): 454-459. DOI: 10.5768/JAO201536.0305002
    [7]Zhang Feng, Wang Zhi-bin, Zhang Yun-long, Guo Xiao-gang, Su Ying, Guo Rui. Diamond turning compensation techniques of diffractive optical elements[J]. Journal of Applied Optics, 2014, 35(6): 1058-1062.
    [8]ZHANG Lei, ZHENG Yang, HE Wen-jun, WANG Jia-ke, ZHENG Jian-ping. Automatic directional benchmark based on liquid optical compensation[J]. Journal of Applied Optics, 2011, 32(6): 1053-1058.
    [9]LIU Xin, SU Ying, ZHI Xi-ling, YANG Chong-min, LIU Xin-wu, FAN Chun-li. Error compensation for pentagonal prism[J]. Journal of Applied Optics, 2010, 31(1): 124-127.
    [10]WEI Yong-qiang, ZOU Wen-dong, ZHAO Li-zhong, JI Hai-yan. Design of white-light interference micro/nano scanning system controlled by SPCE061A[J]. Journal of Applied Optics, 2009, 30(3): 391-396.

Catalog

    Article views (6862) PDF downloads (2789) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return