LIU Jiang, CUI Mu-han, GAO Song-tao, SUI Yong-xin, YANG Huai-jiang. FFT-ernike combined algorithm of wavefront reconstruction in easurement of optical surfaces based on projected fringes deflectometry[J]. Journal of Applied Optics, 2013, 34(4): 614-618.
Citation: LIU Jiang, CUI Mu-han, GAO Song-tao, SUI Yong-xin, YANG Huai-jiang. FFT-ernike combined algorithm of wavefront reconstruction in easurement of optical surfaces based on projected fringes deflectometry[J]. Journal of Applied Optics, 2013, 34(4): 614-618.

FFT-ernike combined algorithm of wavefront reconstruction in easurement of optical surfaces based on projected fringes deflectometry

More Information
  • The basic principle of projected fringes deflectometry is to measure the point-o-oint relations of coordinates among free-orm surface, camera and projection screen, and then compute the reconstructed surface with calculated slope data iteratively. In order to reduce the calculating time of the wavefront reconstruction without losing accuracy, a fast Fourier transform(FFT)Zernike combined algorithm was proposed. The simulated result demonstrates the proposed algorithm can decrease the iterative procedure to 5 times using less than 20 seconds, compared with the traditional Zernike modal algorithm which has 15 iteration times using more than 1 minute. In addition, the calculating time is cut by two-hirds with the accuracy achieving the order of nanometer.
  • [1]MARKUS C K, JURGEN K,GERD H.  Phase measuring deflectometry: a new approach to measure specular free-orm surfaces[J]. SPIE,2004,5457:366-76.
    [2]WANG Jian-eng ,LIU Ke .LI Yan-iu ,et al.  Comparison of wavefront reconstruction with modal method and zonal[J]. SPIE ,2011,8197A:1-0.
    [3]RIMMER M  P.ethod for evaluating lateral shearing interferograms [J] . Appl. Opt., 1974, 13(3):623-29.
    [4]CUBALCHINI  R.  Modal wavefront estimation from phase derivative measurements[J]. J.Opt.Soc.Am.,1979,69(1):972-77.
    [5]谢苏隆. Zernike多项式拟合曲面中拟合精度与采样点数目研究[J] .应用光学, 2010,31(6): 944-49.
    XIE Su-ong. Sampling point number in curved surface fitting with Zernike polynomials [J].Journal of Applied Optics, 2010, 31(6): 944-49.  (in Chinese with an English abstract)
    [6]SOUTHWELL W H. Wave-ront estimation from wave-ront slope measurements[J]. J. Opt. Soc. Am.,1980, 70(8): 998-006.
    [7]KLAUS F, CHRIS L,KOLIOPOU L.  Wavefront reconstruction from noisy slope or difference data using the discrete fourier transform[J].  SPIE ,1985, 551: 75-0.
    [8]MICHEL G .  Method for surface reconstruction from slope or curvature measurements of rectangular areas[J].Applied Optics,1997, 36(20): 4823-829.
    [9]SU Peng ,ROBERT E,PARKS, et al. Software configurable optical test system: a computerized reverse Hartmann test[J]. Applied Optics ,2010, 49(23): 4404-412.
    [10]MALACARA D. Optical shop testing[M].3rd ed. Hoboken:John Wiley&Sons,Inc.,2007.
    [11]王灵杰, 张新, 张建萍, 等. 自由曲面空间光学系统设计研究[J]. 应用光学,2012,33(6): 1041-046.
     WANG Ling-ie, ZHANG Xin, ZHANG Jian-ing, et al.  Free-orm surface space optical system[J]. Journal of Applied Optics, 2012,33(6): 1041-046. (in Chinese with an English abstract)
  • Related Articles

    [1]CHEN Yayi, CHEN Yunyun, ZHANG Jingyun, YANG Cuihong. Effect of phase object position on results of Moire deflectometry[J]. Journal of Applied Optics, 2022, 43(5): 943-949. DOI: 10.5768/JAO202243.0503003
    [2]ZHAO Tingting, BAI Fuzhong, XU Yongxiang, GAO Xiaojuan. Simple correction method for projection fringe period based on parameter calibration[J]. Journal of Applied Optics, 2021, 42(1): 119-124. DOI: 10.5768/JAO202142.0103004
    [3]LIU Lu, PAN Yanjuan, XI Dongdong, WANG Yuwei, TANG Qixing. Phase unwrapping errors correction for phase-encoding based on fringe projection profilometry[J]. Journal of Applied Optics, 2020, 41(5): 978-983. DOI: 10.5768/JAO202041.0502007
    [4]SHI Yaoqun, DENG Linjia, WANG Zhaoxu, FU Yanjun, ZHONG Kejun, GUAN Bingliang. Micro-objects measurement system based on structured light fringe projection[J]. Journal of Applied Optics, 2019, 40(6): 1120-1125. DOI: 10.5768/JAO201940.0603007
    [5]Qiu Lei, Qian Bin, Fu Yanjun, Zhong Kejun. Three-dimensional shape measurement method based on sinusoidal and triangular fringe projection[J]. Journal of Applied Optics, 2018, 39(4): 522-527. DOI: 10.5768/JAO201839.0403002
    [6]Wang Liu, Chen Chao, Gao Nan, Zhang Zonghua. Three-dimensional shape measurement of high reflective objects based on adaptive fringe-pattern projection[J]. Journal of Applied Optics, 2018, 39(3): 373-378. DOI: 10.5768/JAO201839.0303001
    [7]Zhang Yongtao, Wang Yize, Wang Yi, Song Zhiwei. Effect of electrooptic material modulation error on parallel beam interference projection[J]. Journal of Applied Optics, 2016, 37(2): 235-239. DOI: 10.5768/JAO201637.0203002
    [8]AN Dong, DA Fei-peng, GAI Shao-yan, LU Ke. New system calibration method based on fringe projection profilometry[J]. Journal of Applied Optics, 2014, 35(1): 81-84.
    [9]WANG Lu-yang, DA Fei-peng. Rapid 3D shape measurement based on color-encoded fringe projection[J]. Journal of Applied Optics, 2011, 32(2): 276-281.
    [10]HUANG Yan-qun, TIAN Ai-ling. Obtain the Relative Displacement of the Fringe-centerlines in the 3-D Profilometry Measurement Using Grating Projection[J]. Journal of Applied Optics, 2004, 25(6): 57-60.

Catalog

    Article views (2996) PDF downloads (460) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return