ZHAO Tingting, BAI Fuzhong, XU Yongxiang, GAO Xiaojuan. Simple correction method for projection fringe period based on parameter calibration[J]. Journal of Applied Optics, 2021, 42(1): 119-124. DOI: 10.5768/JAO202142.0103004
Citation: ZHAO Tingting, BAI Fuzhong, XU Yongxiang, GAO Xiaojuan. Simple correction method for projection fringe period based on parameter calibration[J]. Journal of Applied Optics, 2021, 42(1): 119-124. DOI: 10.5768/JAO202142.0103004

Simple correction method for projection fringe period based on parameter calibration

More Information
  • Received Date: November 10, 2020
  • Revised Date: December 06, 2020
  • Available Online: December 09, 2020
  • In the fringe projection profilometry system based on triangulation principle, the fringe projected on the reference plane always produces the period broaden phenomenon, which can cause phase distortion and even affect the measuring accuracy. The fringe position was taken as the control variable to derive the linear mathematical model of fringe period correction. The model parameters were obtained with a simple and convenient calibration process. Then the new projected fringe was calculated according to the correction model, and the periodic distribution fringe was obtained on the reference plane. The experimental results show that the varying range of the fringe period after correction is within ±0.1 pixel, and this method can obtain the more accurate 3D profile measurement results.
  • [1]
    KUO C F J, WU H C. A homography fringe eneration method of fringe projection profilometry technolngy[J]. Optics & Lasers in Engineering,2014,56:28-34.
    [2]
    YU Jin, GAO Nan, ZHANG Zonghua, et al. High sensitivity fringe projection profilometry combining optimal fringe frequency and optimal fringe direction[J]. Optics and Lasers in Engineering,2020,129:106068. doi: 10.1016/j.optlaseng.2020.106068
    [3]
    肖焱山, 曹益平, 武迎春. 条纹投影轮廓术中新的相位高度映射算法[J]. 中国激光,2011,38(12):193-199.

    XIAO Yanshan, CAO Yiping, WU Yingchun. A new phase-to-height mapping algorithm in fringe projection profilometry[J]. Chinese Journal of Lasers,2011,38(12):193-199.
    [4]
    吴浩, 徐向荣, 许四祥. 基于频域纹理消除的结构性纹理缺陷检测方法[J]. 应用光学,2020,41(4):876-880. doi: 10.5768/JAO202041.0405004

    WU Hao, XU Xiangrong, XU Sixiang. Structural texture defects detection method based on frequency domain texture elimination[J]. Journal of Applied Optics,2020,41(4):876-880. doi: 10.5768/JAO202041.0405004
    [5]
    QUAN C, TAY C J, HUANG Y H. 3-D deformation measurement using fringe projection and digital image correlation[J]. Optik,2004,115(4):164-168. doi: 10.1016/S0030-4026(08)70004-4
    [6]
    朱勇建, 黄振, 马俊飞, 等. 光栅投影三维测量系统标定技术研究[J]. 应用光学,2020,41(5):938-946. doi: 10.5768/JAO202041.0502002

    ZHU Yongjian, HUANG Zhen, MA Junfei, et al. Study on calibration method of grating projection 3D measuring system[J]. Journal of Applied Optics,2020,41(5):938-946. doi: 10.5768/JAO202041.0502002
    [7]
    虞梓豪, 刘瑾, 杨海马, 等. 多频光栅物体高精度廓形三维测量及重建研究[J]. 应用光学,2020,41(3):580-585.

    YU Zihao, LIU Jin, YANG Haima, et al. Research on 3D measurement and reconstruction of high-precision profile of multifrequency grating object[J]. Journal of Applied Optics,2020,41(3):580-585.
    [8]
    TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3D object shapes[J]. Applied Optics,1983,22(24):3977-3982. doi: 10.1364/AO.22.003977
    [9]
    刘路, 潘艳娟, 奚冬冬, 等. 相位编码条纹投影轮廓术的相位展开误差校正方法[J]. 应用光学,2020,41(5):978-983. doi: 10.5768/JAO202041.0502007

    LIU Lu, PAN Yanjuan, XI Dongdong, et al. Phase unwrapping errors correction for phaseencoding based on fringe projection profilometry[J]. Journal of Applied Optics,2020,41(5):978-983. doi: 10.5768/JAO202041.0502007
    [10]
    SANSONI G, CAROCCI M, RODELLA R. Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light[J]. IEEE Transactions Instrument Measurement,2000,49(3):628-636. doi: 10.1109/19.850406
    [11]
    MAUREL A, COBELLI P, PAGNEUX V, et al. Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry[J]. Applied Optics,2009,48(2):380-392. doi: 10.1364/AO.48.000380
    [12]
    ZHANG Z, TOWERS C E, TOWERS D P. Uneven fringe projection for efficient calibration in highresolution 3D shape metrology[J]. Applied Optics,2007,46(24):6113-6119. doi: 10.1364/AO.46.006113
    [13]
    FU Yanjun, LUO Qian. Fringe projection profilometry based on a novel phase shift method[J]. Optics Express,2011,19(22):21739-21747. doi: 10.1364/OE.19.021739
    [14]
    边心田, 程菊, 左芬, 等. 基于光栅预校正的三维面形测量方法[J]. 激光与光电子学进展,2017,54:011202.

    BIAN Xintian, CHENG Ju, ZUO Fen, et al. A method of 3D shape measurement based on alignment grating projection[J]. Laser & Optoelectronics Progress,2017,54:011202.
    [15]
    李岩, 麻珂, 张启灿. 傅里叶变换轮廓术中相位失真的预矫正方法[J]. 光学与光电技术,2012,10(1):22-27.

    LI Yan, MA Ke, ZHANG Qican. Prior correction method of phase distortion in Fourier transform profilometry[J]. Optics & Optoelectronic, Technology,2012,10(1):22-27.
    [16]
    SRINIVASAN V, LIU H C, HALIOUA M. Automated phase-measuring profilometry: a phase mapping approach[J]. Applied Optics,1985,24(2):185-188. doi: 10.1364/AO.24.000185
  • Related Articles

    [1]GUAN Wenjie, WU Qingwei, GONG Chao, WU Yingchun, WU Xuecheng. Dynamic liquid film measurement with Fourier transform profilometry[J]. Journal of Applied Optics, 2020, 41(2): 366-374. DOI: 10.5768/JAO202041.0203005
    [2]SHI Yaoqun, DENG Linjia, WANG Zhaoxu, FU Yanjun, ZHONG Kejun, GUAN Bingliang. Micro-objects measurement system based on structured light fringe projection[J]. Journal of Applied Optics, 2019, 40(6): 1120-1125. DOI: 10.5768/JAO201940.0603007
    [3]Wang Liu, Chen Chao, Gao Nan, Zhang Zonghua. Three-dimensional shape measurement of high reflective objects based on adaptive fringe-pattern projection[J]. Journal of Applied Optics, 2018, 39(3): 373-378. DOI: 10.5768/JAO201839.0303001
    [4]Hong Han-yu, Luo Xiao, Song Jie, Shi Yu. Efficient generation for 3D printing model based on image self-calibration[J]. Journal of Applied Optics, 2016, 37(1): 69-73. DOI: 10.5768/JAO201637.0102003
    [5]AN Dong, DA Fei-peng, GAI Shao-yan, LU Ke. New system calibration method based on fringe projection profilometry[J]. Journal of Applied Optics, 2014, 35(1): 81-84.
    [6]HUANG Li-na, YU Zhong-qiu. Parameters calibration algorithm in electronic whiteboard system[J]. Journal of Applied Optics, 2012, 33(2): 271-277.
    [7]WU Ling-ling, WANG Xing, CHEN Jing, WU Ji-an, ZHANG Wei-guang. Sub-pixel calibration of CCD in Moiré fringes measurement based on image processing[J]. Journal of Applied Optics, 2011, 32(5): 955-959.
    [8]ZHAO Gao-chang, WU Feng-bo, ZHOU Bin, YANG Zhong-min, QIAO Bao-ming. Simplified method to calibrate cameras based on DLT model[J]. Journal of Applied Optics, 2009, 30(4): 585-589.
    [9]YU Fen-qi, LEI Jin-li. Simulation realization of nonlinear camera calibration[J]. Journal of Applied Optics, 2008, 29(supp): 124-126.
    [10]CHEN Wen-jian, WU Feng-bo. Measurement technology of three-dimensional outline based on ray tracing[J]. Journal of Applied Optics, 2008, 29(supp): 72-75.

Catalog

    Article views (2464) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return