SHI Yaoqun, DENG Linjia, WANG Zhaoxu, FU Yanjun, ZHONG Kejun, GUAN Bingliang. Micro-objects measurement system based on structured light fringe projection[J]. Journal of Applied Optics, 2019, 40(6): 1120-1125. DOI: 10.5768/JAO201940.0603007
Citation: SHI Yaoqun, DENG Linjia, WANG Zhaoxu, FU Yanjun, ZHONG Kejun, GUAN Bingliang. Micro-objects measurement system based on structured light fringe projection[J]. Journal of Applied Optics, 2019, 40(6): 1120-1125. DOI: 10.5768/JAO201940.0603007

Micro-objects measurement system based on structured light fringe projection

More Information
  • Received Date: July 07, 2019
  • Revised Date: September 28, 2019
  • In order to measure micro-objects by the method of structured light projection, a set of three-dimensional topography measurement system for micro-objects was built, and the field rangecould reach 1.8 cm×1.6 cm.This measurement system took advantage of the high-speed projection feature of Light Crafter 4 500 digital projection module, low distortion scaling feature of stereoscopic microscope, extended depth of field and low distortion imaging feature of telecentric lenses. First the phase shift fringes projected by Light Crafter 4 500 were scaled down with low distortion by stereoscopic microscope, then projected it to the surface of the measured object, and the camera equipped with telecentric lens synchronously recorded deformable fringes that were modulated by the object surface topography. The corresponding truncation phase diagram was calculated by using three-step phase shift method, and then the continuous phase distribution by phase-unwrapping algorithm based on reliable path tracking was also sought for. The three-dimensional surface topography of the measured object was reconstructed. The experiment successfully reconstructs the three-dimensional topography of micro-objects surface such as BGA chips, and the results show that the system measurement accuracy reaches 11 μm, as well as the effective depth measurement range of the system is 700 μm.
  • [1]
    许平, 陈文静, 苏显渝.高精度的数字光投影傅里叶变换轮廓术[J].光电工程, 2005, 32(11): 59-62. doi: 10.3969/j.issn.1003-501X.2005.11.015

    XU Ping, CHEN Wenjing, SU Xianyu. Higher-precision FTP based on digital light projecting[J]. Opto-Electronic Engineering, 2005, 32(11): 59-62. doi: 10.3969/j.issn.1003-501X.2005.11.015
    [2]
    CREATH K. V phase-measurement interferometry techniques[J]. Progress in Optics, 1988, 26(6): 349-393. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0215067435/
    [3]
    KANG X, HE X. Two step phase shifting technique for phase measurement profilometry by grating projection[J]. Acta Optica Sinica, 2015, 23(1): 75-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb200301017
    [4]
    邵双运, 苏显渝.调制度测量轮廓术高度信息获取新算法[J].光电工程, 2005, 32(9): 43-54. doi: 10.3969/j.issn.1003-501X.2005.09.012

    SHAO Shuangyun, SU Xianyu. New depth recovery algorithm in modulation measurement profilometry[J]. Opto-Electronic Engineering, 2005, 32(9): 43-54. doi: 10.3969/j.issn.1003-501X.2005.09.012
    [5]
    VARGAS J, KONINCKX T P, QUIROGA J A, et al. Three-dimensional measurement of microchips using structured light techniques[J]. Optical Engineering, 2008, 47(5): 53-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50122a830b9db7c18e0954df13043f5a
    [6]
    ANAND A, FARIDIAN A, CHHANIWAL V, et al. High-resolution quantitative phase microscopic imaging in deep UV with phase retrieval[J]. Optics Letters, 2011, 36(22): 4362-4364. doi: 10.1364/OL.36.004362
    [7]
    LI A, PENG X, YIN Y, et al. Fringe projection based quantitative 3D microscopy[J]. Optik, 2013, 124(21): 5052-5056. doi: 10.1016/j.ijleo.2013.03.070
    [8]
    VAN JEUGHT S, SOONS J A M, DIRCKX J J J. Real-time microscopic phase-shifting profilometry[J]. Applied Optics, 2015, 54(15): 4953-4959. doi: 10.1364/AO.54.004953
    [9]
    於燕琴.基于条纹投影的三维小视场测量系统研究[D].天津: 河北工业大学, 2015: 6-12. http://cdmd.cnki.com.cn/Article/CDMD-10080-1016751218.htm

    YU Yanqin. Research on 3-D small field of view measurement system based on fringe projection[D]. Tianjin: Hebei University of Technology, 2015: 6-12. http://cdmd.cnki.com.cn/Article/CDMD-10080-1016751218.htm
    [10]
    艾佳, 刘守起, 刘元坤, 等.利用三频外差实现的小视场三维测量系统[J].光电工程, 2016, 43(09):39-44. doi: 10.3969/j.issn.1003-501X.2016.09.007

    AI Jia, LIU Shouqi, LIU Yuankun, et al. Three-dimensional small-field measurement system based on tri-frequency heterodyne fringe analysis[J]. Opto-Electronic Engineering, 2016, 43(09): 39-44. doi: 10.3969/j.issn.1003-501X.2016.09.007
    [11]
    HU Y, CHEN Q, TAO T, et al. Absolute three-dimensional micro surface profile measurement based on a greenough-type stereomicroscope[J]. Measurement Science and Technology, 2017, 28(4): 045004. doi: 10.1088/1361-6501/aa5a2d
    [12]
    孔玮琦.微小物体光栅投影三维测量系统的关键技术研究[D].南京: 东南大学, 2018: 7-13. http://cdmd.cnki.com.cn/Article/CDMD-10286-1018005632.htm

    KONG Weiqi. Research on micro-obeject fringe projector profilometry system[D]. Nanjing: Southeast University, 2018: 7-13. http://cdmd.cnki.com.cn/Article/CDMD-10286-1018005632.htm
    [13]
    LI B, ZHANG S. Microscopic structured light 3D profilometry: binary defocusing technique vs. sinusoidal fringe projection[J]. Optics and Lasers in Engineering, 2017, 96: 117-123. doi: 10.1016/j.optlaseng.2016.06.009
    [14]
    王永红, 陈维杰, 钟诗民, 等.相位解包裹技术及应用研究进展[J].测控技术, 2018, 37(12): 1-7. http://d.old.wanfangdata.com.cn/Periodical/ckjs201812001

    WANG Yonghong, CHEN Weijie, ZHONG Shimin, et al. Research progress in phase Unwrapping technology and its applications[J]. Measurement & Control Technology, 2018, 37(12): 1-7. http://d.old.wanfangdata.com.cn/Periodical/ckjs201812001
    [15]
    SCHREIER H W, GARCIA D, SUTTON M A. Advances in light microscope stereo vision[J]. Experimental Mechanics, 2017, 44(3): 278-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=946a4213131c010fef468003937f468c
  • Related Articles

    [1]WANG Xinqiang, QIN Shan, SUN Xiaobing, XIONG Wei, YE Song, WANG Fangyuan, TONG Xuanke. Rapid measurement of sludge sedimentation ratio based on polarization information[J]. Journal of Applied Optics, 2025, 46(1): 121-128. DOI: 10.5768/JAO202546.0103001
    [2]HOU Xiaoming, QIU Yafeng. Weather recognition method based on convolutional neural network and feature fusion[J]. Journal of Applied Optics, 2023, 44(2): 323-329. DOI: 10.5768/JAO202344.0202004
    [3]TANG Wenrui, MA Lin, ZHU Siqi, LIN Sifan, JIA Longze. Area mapping for water and forest based on satellite hyper-spectral remote sensing[J]. Journal of Applied Optics, 2022, 43(5): 886-892. DOI: 10.5768/JAO202243.0502002
    [4]CHEN Peng, YAN Xianze, HAN Yangyang, WU Chenyang, ZAN Hao. Nitrate nitrogen concentration detection method based on principal component analysis and BP neural network[J]. Journal of Applied Optics, 2020, 41(4): 761-768. DOI: 10.5768/JAO202041.0410002
    [5]Zhang Xinting, Kang Lei, Wu Qianqian, Zhang Wanyi, Li Yuyao. PSD nonlinear correction based on BP optimization algorithm[J]. Journal of Applied Optics, 2016, 37(3): 415-418. DOI: 10.5768/JAO201637.0303003
    [6]LI Ji. Image compression used improved error back-propagation neural network[J]. Journal of Applied Optics, 2013, 34(6): 974-979.
    [7]FAN Yuan-yuan, SANG Ying-jun, SHEN Xiang-heng. Optimization of image quality assessment parameters based on back-propagation neural network[J]. Journal of Applied Optics, 2011, 32(6): 1150-1155.
    [8]WANG Lei, QIAO Xiao-yan, ZHANG Shu, ZHAO Fa-gang, DONG You-er. Pesticide residue detection by fluorescence spectral analysis based on BP neural network[J]. Journal of Applied Optics, 2010, 31(3): 442-446.
    [9]MA Tao, SUN Hong-hui, XIAO Song, LIU Chao-shan. Recognition algorithm for star pattern of little swatch based on BP neural network[J]. Journal of Applied Optics, 2009, 30(2): 252-256.
    [10]WANG Yong-zhong, ZHANG Yong, FENG Guang-bin, XUE Rui, HUA Wen-sheng. Application of BP neural network in correlated[J]. Journal of Applied Optics, 2006, 27(1): 15-18.
  • Cited by

    Periodical cited type(1)

    1. 赵敏琨,刘小雄,徐新龙,杨楠,王映龙. 基于视觉的空中加油定位技术研究. 计算机测量与控制. 2023(06): 267-273+279 .

    Other cited types(8)

Catalog

    Article views (643) PDF downloads (82) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return