YANG Yaxin, YAO Haifeng, LIU Zhi, ZANG Jingfeng, ZHAO Jiantong, TIAN Shaoqian, CAO Zhongyu. Research on multi-aperture receiving characteristics of optical transmission based on composite phase plate[J]. Journal of Applied Optics, 2024, 45(5): 1085-1094. DOI: 10.5768/JAO202445.0508002
Citation: YANG Yaxin, YAO Haifeng, LIU Zhi, ZANG Jingfeng, ZHAO Jiantong, TIAN Shaoqian, CAO Zhongyu. Research on multi-aperture receiving characteristics of optical transmission based on composite phase plate[J]. Journal of Applied Optics, 2024, 45(5): 1085-1094. DOI: 10.5768/JAO202445.0508002

Research on multi-aperture receiving characteristics of optical transmission based on composite phase plate

More Information
  • Received Date: November 06, 2023
  • Revised Date: December 25, 2023
  • Available Online: August 19, 2024
  • Multi-aperture receiving technology can effectively suppress intensity scintillation in wireless laser communication. However, the effect of the diameter, spacing and number of receiving aperture on improving the performance of wireless laser communication is not clear and complete. Therefore, an optical transmission method based on composite phase screen was proposed, and the characteristics of multi-aperture reception were studied. Firstly, the power spectrum inversion method was combined with Zernike tilt method to generate a composite phase screen, and the mathematical model of optical transmission multi-aperture reception was constructed. Then, the diameter, spacing and number of receiving aperture were changed to calculate the change of intensity scintillation at the receiving end. Finally, the variation of multi-aperture received intensity scintillation was analyzed under the actual optical transmission scenario with different atmospheric refractive index structure constants, wavelengths and transmission distances. The results show that the intensity scintillation of five receiving apertures with diameters of 0.2 m and aperture spacing of 0.4 m decreases from 0.2032 to 0.0524 when the structure constant of atmospheric refractive index decreases from 2.2313×10−16 m−2/3 to 1.5812×10−17 m−2/3. When the wavelength of light wave changes from 532 nm to 1550 nm, the intensity scintillation of five receiving apertures with diameters of 0.2 m and apertures spacing of 0.4 m decreases from 0.2165 to 0.1523. When the propagation distance increases from 7×103 m to 7×105 m, the intensity scintillation of five receiving apertures with diameters of 0.2 m and aperture spacing of 0.4 m increases from 0.0043 to 0.3239. This study summarizes the law of multi-aperture receiving characteristics of wireless laser communication.

  • [1]
    ANDREWS L C, PHILLIPS R L, YU P T. Optical scintillations and fade statistics for a satellite-communication system[J]. Applied Optics, 1995, 34(33): 7742-7751. doi: 10.1364/AO.34.007742
    [2]
    FRIED D L, MEVERS G E, KEISTER M P. Measurements of laser-beam scintillation in the atmosphere[J]. Journal of the Optical Society of America, 1967, 57(6): 787. doi: 10.1364/JOSA.57.000787
    [3]
    尹涵, 宋英雄, 李迎春, 等. 基于MIMO模式分集相干接收的自由空间光通信大气湍流补偿技术研究[J]. 中国激光, 2022, 49(23): 2306002. doi: 10.3788/CJL202249.2306002

    YIN Han, SONG Yingxiong, LI Yingchun, et al. Free-space optical communication atmospheric turbulence compensation based on multiple input multiple output mode diversity coherent reception[J]. Chinese Journal of Lasers, 2022, 49(23): 2306002. doi: 10.3788/CJL202249.2306002
    [4]
    YAO H F, NI X L, CHEN C Y, et al. Performance of M-PAM FSO communication systems in atmospheric turbulence based on APD detector[J]. Optics Express, 2018, 26(18): 23819-23830. doi: 10.1364/OE.26.023819
    [5]
    BELMONTE A, KAHN J M. Capacity of coherent free-space optical links using atmospheric compensation techniques[J]. Optics Express, 2009, 17(4): 2763-2773. doi: 10.1364/OE.17.002763
    [6]
    YAO H F, NI X L, LIU Z, et al. Experimental demonstration of 4-PAM for high-speed indoor free-space OW communication based on cascade FIR-LMS adaptive equalizer[J]. Optics Communications, 2018, 426: 490-496. doi: 10.1016/j.optcom.2018.06.001
    [7]
    YAO H F, NI X L, CHEN C Y, et al. Performance analysis of MPSK FSO communication based on the balanced detector in a fiber-coupling system[J]. IEEE Access, 2019, 7: 84197-84208. doi: 10.1109/ACCESS.2019.2924178
    [8]
    GIRI R K, PATNAIK B. Error performance enhancement of satellite to earth FSO downlink employing hybrid subcarrier intensity modulation scheme with aperture averaging technique[J]. Optical and Quantum Electronics, 2019, 51(4): 111. doi: 10.1007/s11082-019-1817-9
    [9]
    IBRAHIM M M, IBRAHIM A M. Performance analysis of optical receivers with space diversity reception[J]. IEE Proceedings - Communications, 1996, 143(6): 369. doi: 10.1049/ip-com:19960885
    [10]
    TSIFTSIS T A, SANDALIDIS H G, KARAGIANNIDIS G K, et al. Optical wireless links with spatial diversity over strong atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(2): 951-957. doi: 10.1109/TWC.2009.071318
    [11]
    PRABU K, KUMAR D S. BER analysis for BPSK based SIM–FSO communication system over strong atmospheric turbulence with spatial diversity and pointing errors[J]. Wireless Personal Communications, 2015, 81(3): 1143-1157. doi: 10.1007/s11277-014-2176-2
    [12]
    ANDROUTSOS N A, NISTAZAKIS H E, CHATZIKONTIS E V, et al. Spatial jitter influence on the average BLER performance of SIMO FSO links over atmospheric turbulence channels[J]. Electronics, 2021, 10(16): 2033. doi: 10.3390/electronics10162033
    [13]
    劳陈哲, 孙建锋, 周煜, 等. 多孔径接收相干合束系统性能研究[J]. 中国激光, 2019, 46(7): 0705003. doi: 10.3788/CJL201946.0705003

    LAO Chenzhe, SUN Jianfeng, ZHOU Yu, et al. Performance of coherent beam combining system with multiple aperture receiver[J]. Chinese Journal of Lasers, 2019, 46(7): 0705003. doi: 10.3788/CJL201946.0705003
    [14]
    柯熙政, 宋鹏, 裴国强. 无线激光通信中的多孔径接收技术研究[J]. 光学学报, 2011, 31(12): 1201003. doi: 10.3788/AOS201131.1201003

    KE Xizheng, SONG Peng, PEI Guoqiang. Research on multi-aperture reception in wireless laser communication[J]. Acta Optica Sinica, 2011, 31(12): 1201003. doi: 10.3788/AOS201131.1201003
    [15]
    窦冰冰. Mixure-Gamma分布下星地下行相位补偿多孔径接收系统性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    DOU Bingbing. Research on performance of satellite-to-ground downlink phase compensation multi-aperture receiving system under Mixure-Gamma distribution[D]. Harbin: Harbin Institute of Technology, 2020.
    [16]
    程知, 侯再红, 靖旭, 等. Hufnagel-Valley湍流强度廓线的高精度实时反演方法[J]. 红外与激光工程, 2013, 42(6): 1562-1567. doi: 10.3969/j.issn.1007-2276.2013.06.033

    CHENG Zhi, HOU Zaihong, JING Xu, et al. High-precision and real-time inversion method of Hufnagel-Valley turbulence profile[J]. Infrared and Laser Engineering, 2013, 42(6): 1562-1567. doi: 10.3969/j.issn.1007-2276.2013.06.033
    [17]
    NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207. doi: 10.1364/JOSA.66.000207
    [18]
    向劲松. 快速傅里叶变换湍流相位屏高频误差的补偿方法[J]. 光学学报, 2014, 34(10): 1001003. doi: 10.3788/AOS201434.1001003

    XIANG Jinsong. High-frequency error compensation method for the fast Fourier transform-based turbulent phase screen[J]. Acta Optica Sinica, 2014, 34(10): 1001003. doi: 10.3788/AOS201434.1001003
    [19]
    CHANAN G A. Calculation of wave-front tilt correlations associated with atmospheric turbulence[J]. Journal of the Optical Society of America A, 1992, 9(2): 298-301. doi: 10.1364/JOSAA.9.000298
    [20]
    YU L K, SHEN H, JING X, et al. Study on the measurement of isoplanatic angle using stellar scintillation[J]. Acta Optica Sinica, 2014, 34(3): 0301001. doi: 10.3788/AOS201434.0301001
    [21]
    SASIELA R J. Electromagnetic wave propagation in turbulence[M]. New York: SPIE, 2007: 193-203.
    [22]
    YU L K, JING X, SHEN H, et al. Isoplanatic angle in finite distance: theory analysis on measurement feasibility[J]. Optics Letters, 2014, 39(4): 789-792. doi: 10.1364/OL.39.000789
    [23]
    沈红, 于龙昆, 周玉修, 等. 孔径平滑下平面波与球面波的光强闪烁[J]. 激光与光电子学进展, 2021, 58(23): 2301001.

    SHEN Hong, YU Longkun, ZHOU Yuxiu, et al. Light intensity scintillation of plane wave and spherical wave under aperture-averaging[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2301001.
    [24]
    ANDREWS L C. Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere[J]. Journal of the Optical Society of America A, 1992, 9(4): 597-600. doi: 10.1364/JOSAA.9.000597
  • Related Articles

    [1]ZUO Xiaozhou, WANG Huilin, ZHOU Yun, XI Gangyang, ZHANG Yunlong, ZHAO Hongjun, YU Bingwei. Research on thermal optical properties and thermal control technology of primary mirror assembly[J]. Journal of Applied Optics, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005
    [2]WANG Meiqin, PAN Haijun, LIU Bin. Design of wide-band continuous zoom optical system with 40x large zoom ratio[J]. Journal of Applied Optics, 2023, 44(2): 246-252. DOI: 10.5768/JAO202344.0201002
    [3]DUAN Hongjian, WANG Jianjun, HU Bo, MENG Haijiang, ZUO Xiaozhou, MA Youheng, SHI Leilei. Improvement and analysis of optical axis consistency of an electro-optical device[J]. Journal of Applied Optics, 2023, 44(2): 239-245. DOI: 10.5768/JAO202344.0201001
    [4]YANG Haijin, HAO Fang, GUO Ming, ZHANG Ping, GAO Xuejun, ZHU Jiali, FEI Chengbo, BIAN Zhenzhen, LIANG Qi. Characterization calibration method of strapdown inertial navigation axis in photoelectric target calibration[J]. Journal of Applied Optics, 2021, 42(3): 510-515. DOI: 10.5768/JAO202142.0303003
    [5]SUN Yongxue, XIA Zhentao, WANG Ke, JIANG Shouwang, CHEN Gangyi, FAN Rong, LI Tao. Research on off-axis reflective collimator design and inspection scheme of secondary mirror[J]. Journal of Applied Optics, 2021, 42(2): 334-338. DOI: 10.5768/JAO202142.0205001
    [6]ZHAO Xiting, ZHANG Chao, JI Yi, LIU Hui, JIAO Wenchun, HUANG Yang, LI Chongyang, ZHANG Zhifei. Distortion consistency correction technique for ultra-wide field of view off-axis optical system[J]. Journal of Applied Optics, 2020, 41(5): 1032-1036. DOI: 10.5768/JAO202041.0503005
    [7]Ji Xiaohui, Kong Wei. Design of multi-spectral common aperture infinity collimator[J]. Journal of Applied Optics, 2018, 39(3): 339-342. DOI: 10.5768/JAO201839.0301007
    [8]Zhang Xiang-ming, Jiang Feng, Kong Long-yang, Li Yu-xi, Liu Yi-chen, Zhang Jin-liang, Zhao Hong-jun, Wang Zhi-chao, Zhong Li-ping. Research on optical alignment technology for Cassegrain system[J]. Journal of Applied Optics, 2015, 36(4): 526-530. DOI: 10.5768/JAO201536.0401006
    [9]JI Xiao-hui, YANG Lu, JIANG Xu. Design of multi-optical-axis and multi-spectral collimation system[J]. Journal of Applied Optics, 2013, 34(6): 894-897.
    [10]HUANG Jing, LIU Zhao-hui, SHE Wen-ji, GUO Chuang-cheng. Design of lab test system for boresight of multi-channel optical axes[J]. Journal of Applied Optics, 2007, 28(5): 663-666.
  • Cited by

    Periodical cited type(1)

    1. 苏红,李臻元,龚海彬,王世兴. 基于Z扫描系统的石墨烯非线性吸收特性研究. 光学技术. 2019(04): 482-485 .

    Other cited types(1)

Catalog

    Article views (84) PDF downloads (39) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return