Citation: | ZUO Xiaozhou, WANG Huilin, ZHOU Yun, XI Gangyang, ZHANG Yunlong, ZHAO Hongjun, YU Bingwei. Research on thermal optical properties and thermal control technology of primary mirror assembly[J]. Journal of Applied Optics, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005 |
Aiming at the adaptability problem of common optical path system to ambient temperature, a regional thermal control method of primary mirror assembly based on comprehensive heat transfer was proposed on the basis of the temperature-optics deformation characteristics. The heat transfer model of the primary mirror assembly was established, and the temperature distribution properties under typical conditions were analyzed. The thermal simulation of the primary mirror with different materials was carried out, and the model was modified with the thermal optical test results, so that the absolute deviation between the simulation and the measured results of the temperature field was less than 1.4 ℃. At the same time, the temperature gradient control threshold of the primary mirror assembly was determined. On this basis, the regional heat transfer strategy was adopted to make the primary mirror assembly reach the thermal control goal of high temperature rise level and low temperature gradient. Taking a primary mirror assembly as the object, the simulation and test were carried out. The results show that when the average temperature rise of the primary mirror reaches more than 16 ℃, the axial temperature gradient of the mirror is equal or lesser than 2.5 ℃, the radial and circumferential temperature gradient is equal or lesser than 2.4 ℃, and the variation of the primary mirror shape is less than 0.005 λ, which can provide an optimization idea for the overall thermal control design of the common optical path system.
[1] |
王惠林, 刘吉龙, 吴雄雄, 等. 航空光电侦察图像质量影响因素分析[J]. 应用光学,2021,42(5):817-829. doi: 10.5768/JAO202142.0502001
WANG Huilin, LIU Jilong, WU Xiongxiong, et al. Analysis of image quality influencing factors for aerial electro-optical detection[J]. Journal of Applied Optics,2021,42(5):817-829. doi: 10.5768/JAO202142.0502001
|
[2] |
吉书鹏. 机载光电载荷装备发展与关键技术[J]. 航空兵器,2018(6):3-12. doi: 10.19297/j.cnki.41-1228/tj.2017.06.001
JI Shupeng. Developmet and key technology of airborne photoelectric load equipment[J]. Aero Weaponry,2018(6):3-12. doi: 10.19297/j.cnki.41-1228/tj.2017.06.001
|
[3] |
廖劲峰, 丁亚林, 姚园. 机载折反式光学系统的无热化设计[J]. 液晶与显示,2019,34(1):43-50.
LIAO Jingfeng, DING Yalin, YAO Yuan. Athermalized design of airborne mirror-lens optical system[J]. ChineseJournal of Liquid Crystals and Displays,2019,34(1):43-50.
|
[4] |
刘福贺. 航空光电平台光学系统温度适应性及热控方法研究[D]. 长春: 中国科学院大学(长春光学精密机械与物理研究所), 2020 : 2-3.
LIU Fuhe. Research on the temperature adaptability and thermal control method for the optical system of aviation platform [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, ChineseAcademy of Sciences, 2020: 2-3.
|
[5] |
随愿愿. 轻小型三线阵航摄仪热控设计[D]. 长春: 中国科学院大学(长春光学精密机械与物理研究所), 2019 : 8-9.
SUI Yuanyuan. Thermal control design of a light-small three linear array aerial camera [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, ChineseAcademy of Sciences, 2019: 8-9.
|
[6] |
何宴, 王继红, 彭起. 大口径轻质主镜热特性分析[J]. 光电工程,2013,41(6):63-70.
HE Yan, WANG Jihong, PENG Qi. Thermal property of large aperturelight primary mirror[J]. Opto-Electronic Engineering,2013,41(6):63-70.
|
[7] |
张向明, 姜峰, 孔龙阳, 等. 卡塞格林系统光学装调技术研究[J]. 应用光学,2015,36(4):526-530. doi: 10.5768/JAO201536.0401006
ZHANG Xiangming, JIANG Feng, KONG Longyang, et al. Research on optical alignment technology for Cassegrain system[J]. Journal of Applied Optics,2015,36(4):526-530. doi: 10.5768/JAO201536.0401006
|
[8] |
BERGMAN T L, LAVINE A S. Fundamentals of heat and mass transfer[M]. 8th ed. Hoboken: John Wiley & Sons, Inc. , 2017: 542-544.
|
[9] |
薛文慧, 王惠, 包春慧, 等. 热环境下共形整流罩热辐射特性研究[J]. 应用光学,2017,38(6):999-1005.
XUE Wenhui, WANG Hui, BAO Chunhui, et al. Thermal radiation characteristics of conformal dome in aero-dynamic environment[J]. Journal of Applied Optics,2017,38(6):999-1005.
|
[10] |
胡小平, 汪元, 邓雄, 等. 传热传质分析[M]. 北京:科学出版社, 2021: 155-161.
HU Xiaoping, WANG Yuan, DENG Xiong, et al. Analysis of heat and mass transfer[M]. Beijing. Science Press, 2021: 208-211.
|
[11] |
张冰强, 向艳超, 薛淑艳, 等. 火星表面热环境对航天器热控影响分析[J]. 中国空间科学技术,2021,41(2):55-62.
ZHANG Bingqiang, XIANG Yanchao, XUE Shuyan, et al. Analysis of the influence of Mars surface thermal environment on spacecraft thermal control[J]. Chinese Space Science and Technology,2021,41(2):55-62.
|
[12] |
李莉, 刘健贾, 清虎. 机载光电产品关键部件热仿真研究[J]. 电光与控制,2017,24(7):100-104. doi: 10.3969/j.issn.1671-637X.2017.07.021
LI Li, LIU Jianjia, QING Hu. Thermal simulation to critical components of airborne photoelectrical equipment[J]. Electronics Optics and Control,2017,24(7):100-104. doi: 10.3969/j.issn.1671-637X.2017.07.021
|
[13] |
张源博, 孔林, 李强, 等. 无载荷舱航空相机的热控设计与试验验证[J]. 航天器环境工程,2022,39(2):153-160. doi: 10.12126/see.2022.02.006
ZHANG Yuanbo, KONG Lin, LI Qiang, et al. Thermal control design and test verification of airframe without payload bay[J]. Spacecraft Environment Engineering,2022,39(2):153-160. doi: 10.12126/see.2022.02.006
|
[14] |
王成彬. 提高光机热集成分析精度的关键技术研究[D]. 上海: 中国科学院研究生院( 上海技术物理研究所), 2016: 97-98.
WANG Chengbin. The key technology research of improving precision of thermal/ structural/ optical integrated analysis [D] . Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics) , 2016: 97-98.
|
[15] |
胡瑞, 程云涛, 陈小安, 等. 空间环境下低膨胀玻璃和SiC轻量化反射镜的热稳定性研究[C]//成都: 第六届高分辨率对地观测学术年会, 高分辨率对地观测学术联盟, 2019.
HU Rui, CHENG Yuntao, CHEN Xiaoan , et al. Thermal stability of low expansion glass and SiC lightweight reflector in space environment [C] //Chengdu: Study on Thermal Stability of Low Expansion Glass and SiC Lightweight Mirror in Space Environment. China High Resolution Earth Observation Conference,Academic Alliance for High Resolution Earth Observation, 2019.
|
[16] |
杨勋, 徐抒岩, 马宏财, 等. 径向温度梯度对轻量化反射镜面形精度的影响[J]. 光学精密工程,2019,27(7):1552-1560. doi: 10.3788/OPE.20192707.1552
YANG Xun, XU Shuyan, MA Hongcai, et al. Influence of radial temperature gradient on surface figure of lightweight reflective mirror[J]. Optics and Precision Engineering,2019,27(7):1552-1560. doi: 10.3788/OPE.20192707.1552
|