Citation: | ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001 |
Ultrafast lasers, with the characteristics of narrow pulse width, wide spectrum, and high peak power, have important applications in many fields such as industry, medicine, and research. The dispersion compensation was carried out in the Figure-9 laser cavity, and the laser could achieve both wide spectrum output and self-starting mode locking. When the pump power was 160 mW, the continuous light component of the spectrum disappeared. The spectral full width at half maximum (FWHM) of the output was 22.6 nm and 26.2 nm respectively, and the compressed pulse width reached 143 fs and 128 fs. Under free operation, the root mean square (RMS) of the average output laser power within 1 hour was 0.1%. The designed laser has the advantages of wide spectrum, high integration, and strong stability, which can meet the application requirements of ultrafast laser in fields such as micro-nano processing, bio-optics, and spectral detection.
[1] |
YOU K Y, YAN GP, LUO X, et al. Advances in laser assisted machining of hard and brittle materials[J]. Journal of Manufacturing Processes, 2020, 58: 677-692. doi: 10.1016/j.jmapro.2020.08.034
|
[2] |
ALI B, LITVINYUK I V, RYBACHUK M. Femtosecond laser micromachining of diamond: current research status, applications and challenges[J]. Carbon, 2021, 179: 209-226. doi: 10.1016/j.carbon.2021.04.025
|
[3] |
LEZIUS M, WILKEN T, DEUTSCH C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381-1387. doi: 10.1364/OPTICA.3.001381
|
[4] |
MOHAMMADI A, BIANCHI L, KORGANBAYEV S,et al. Thermomechanical modeling of laser ablation therapy of tumors: sensitivity analysis and optimization of influential variables[J]. IEEE Transactions on Biomedical Engineering, 2022, 69(1): 302-313. doi: 10.1109/TBME.2021.3092889
|
[5] |
QIU J Z, TEICHMAN J M H, WANG T Y, et al. Femtosecond laser lithotripsy: feasibility and ablation mechanism[J]. Journal of Biomedical Optics, 2010, 15(2): 028001-1-5. doi: 10.1117/1.3368998
|
[6] |
SOBON G, SOTOR J, ABRAMSKI K M. All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber[J]. Laser Physics Letters, 2012, 9(8): 581-586. doi: 10.7452/lapl.201210038
|
[7] |
VISKONTAS K, MADEIKIS K, DANILEVICIUS R, et al. The influence of negative cavity dispersion on timing jitter of an all-PM SESAM mode-locked fiber oscillator[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Germany: IEEE, 2019: 1.
|
[8] |
SZCZEPANEK J, KARDAŚ T M, RADZEWICZ C, et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[J]. Optics Letters, 2017, 42(3): 575-578. doi: 10.1364/OL.42.000575
|
[9] |
ZHAO X, LIU Y, ZHOU L, et al. All-normal-dispersion polarization-maintaining Yb-doped fiber laser based on nonlinear amplifying loop mirror[J]. Chinese Journal of Lasers, 2019, 46(5): 279-283. doi: 10.3788/CJL201946.0508025
|
[10] |
DUAN D, WANG J, WU Y, et al. Approach to high pulse energy emission of the self-starting mode-locked figure-9 fiber laser[J]. Optics Express, 2020, 28(22): 33603-33613. doi: 10.1364/OE.409406
|
[11] |
ZHANG L, ZHOU J Q, WANG Z K, et al. SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1314-1316. doi: 10.1109/LPT.2014.2321262
|
[12] |
段雨飞, 李峰, 杨直, 等. 基于液晶空间光调制器进行光谱调制的飞秒啁啾脉冲放大系统[J]. 中国激光, 2021, 48(11): 1101001. doi: 10.3788/CJL202148.1101001
DUAN Yufei, LI Feng, YANG Zhi, et al. Femtosecond chirped pulse amplification system with liquid crystal spatial light modulator for spectral modulation[J]. Chinese Journal of Lasers, 2021, 48(11): 38-46. doi: 10.3788/CJL202148.1101001
|
[13] |
CHONG A, BUCKLEY J, RENNINGER W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100. doi: 10.1364/OE.14.010095
|
[14] |
沈嘉伟, 王勇, 司璐, 等. 163 MHz/786 fs高基础重复频率掺镱飞秒光纤激光振荡器[J]. 光学仪器, 2022, 44(3): 31-36. doi: 10.3969/j.issn.1005-5630.2022.03.005
SHEN Jiawei, WANG Yong, SI Lu, et al. 163 MHz/786 fs high repetition rate Yb-doped femtosecond fiber laser oscillator[J]. Optical Instruments, 2022, 44(3): 31-36. doi: 10.3969/j.issn.1005-5630.2022.03.005
|
[15] |
NICHOLSON J W, ANDREJCO M. A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser[J]. Optics Express, 2006, 14(18): 8160-8167. doi: 10.1364/OE.14.008160
|
[16] |
BAUMANN E, GIORGETTA F R, NICHOLSON J W, et al. High-performance, vibration-immune, fiber-laser frequency comb[J]. Optics Letters, 2009, 34(5): 638-640. doi: 10.1364/OL.34.000638
|
[17] |
MAYER A S, GROSINGER W, FELLINGER J, et al. Flexible all-PM NALM Yb: fiber laser design for frequency comb applications: operation regimes and their noise properties[J]. Optics Express, 2020, 28(13): 18946-18968. doi: 10.1364/OE.394543
|
[18] |
AGUERGARAY C, HAWKER R, RUNGE A F J, et al. 120 fs, 4.2 nJ pulses from an all-normal-dispersion, polarization-maintaining, fiber laser[J]. Applied Physics Letters, 2013, 103(12): 121111. doi: 10.1063/1.4821776
|
[19] |
YU Y, TENG H, WANG H B, et al. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93 fs at 6 MHz using NALM[J]. Optics Express, 2018, 26(8): 10428-10434. doi: 10.1364/OE.26.010428
|
[20] |
HOU Y Z, LIU Y M, LI Z L, et al. Observation of bound solitons generated by a figure-9 fiber laser in the 1 µm band[J]. Applied Optics, 2023, 62(20): 5580-5587. doi: 10.1364/AO.496237
|
[21] |
STERN M, HERITAGE J P, CHASE E W. Grating compensation of third-order fiber dispersion[J]. IEEE Journal of Quantum Electronics, 1992, 28(12): 2742-2748. doi: 10.1109/3.166468
|
[1] | HAN Manlin, HAN Sen, WU Quanying, ZHANG Linghua, SHEN Yuhang, YANG Ying, GUO Jingming. Improved double-pass measurement method for detecting right-angle errors of corner cube prisms[J]. Journal of Applied Optics, 2025, 46(1): 148-155. DOI: 10.5768/JAO202546.0103004 |
[2] | LI Heran, YUAN Qun, FAN Xiaoxin, ZHANG Jiale, MA Jianqiu, QIAO Wenyou, GAO Zhishan, GUO Zhenyan, LEI Lihua, FU Yunxia. Calibration method of topography error of white light interferometry on curved surface sample measurement[J]. Journal of Applied Optics, 2024, 45(2): 422-429. DOI: 10.5768/JAO202445.0203004 |
[3] | ZHANG Wenying, ZHU Haoran. Error analysis and correction of circular grating angle measurement system[J]. Journal of Applied Optics, 2019, 40(3): 399-403. DOI: 10.5768/JAO201940.0301007 |
[4] | LI Qiang, LIU Ang, GAO Bo, XU Kai-yuan, CHAI Li-qun. Error analysis of absolute test method of inhomogeneity of optical materials[J]. Journal of Applied Optics, 2013, 34(3): 463-468. |
[5] | WANG Cai-ling, LI Yu-shan, LIU Xue-wu, HU Bing-liang. Phase error correction in Fourier transform spectrometer based on phase correlation[J]. Journal of Applied Optics, 2011, 32(5): 878-882. |
[6] | MA Ming-zhe, LI Qiang, LIAO Sheng. Ray tracing of mechanically ruled gratings[J]. Journal of Applied Optics, 2010, 31(2): 233-236. |
[7] | LIU Xin, SU Ying, ZHI Xi-ling, YANG Chong-min, LIU Xin-wu, FAN Chun-li. Error compensation for pentagonal prism[J]. Journal of Applied Optics, 2010, 31(1): 124-127. |
[8] | CHANG Shan, CAO Yiping, CHEN Yong-quan. Influence of beam turning error of pentagonal prism on wavefront measurement[J]. Journal of Applied Optics, 2006, 27(3): 186-191. |
[9] | YANG Peng-li. Elimination method of adjustment error in measurement of aspheric optical elements[J]. Journal of Applied Optics, 2006, 27(supp): 58-60. |
[10] | XIA Zhi-lin, XUE Yi-yu, ZHANG You-ling, LIU Wei-hua. Analysis of Error Sensitivity and Allowable Error of Optical Film, and Computer Controll in Production[J]. Journal of Applied Optics, 2004, 25(4): 51-55. |