PENG Jiachi, GUO Jianzhong, LI Yanlong, ZHANG Liang, ZHOU Ying, AI Yong, LIANG Hexi. Application of channel multiplexing technology in LED underwater visible light communication[J]. Journal of Applied Optics, 2023, 44(5): 1133-1141. DOI: 10.5768/JAO202344.0508002
Citation: PENG Jiachi, GUO Jianzhong, LI Yanlong, ZHANG Liang, ZHOU Ying, AI Yong, LIANG Hexi. Application of channel multiplexing technology in LED underwater visible light communication[J]. Journal of Applied Optics, 2023, 44(5): 1133-1141. DOI: 10.5768/JAO202344.0508002

Application of channel multiplexing technology in LED underwater visible light communication

More Information
  • Received Date: December 25, 2022
  • Revised Date: February 23, 2023
  • Available Online: June 11, 2023
  • Underwater visible light communication (UVLC) system with light emitting diode (LED) as transmitter has a low transmission rate due to the limited device bandwidth and it is greatly affected by water environment quality that makes the communication comprehensive performance poor. In order to improve the channel capacity and communication quality, the channel multiplexing technology into the LED-UVLC system was applied. The FPGA was used as the data processing core, LED blue and green light emission array and avalanche photodiode (APD) receiving array were built, and a 4×4 multichannel UVLC system was designed. We placed the system in an underwater environment with a length of 20 m and achieved bidirectional transmission with a bit error rate (BER) of approximately 10−7 at a communication rate of 26.7 Mbit/s. The experimental results show that when transmitting data files of different sizes, compared with the traditional single input single output (SISO)-UVLC system, the communication time is saved about 4 times and the channel capacity gain is consistent with the simulation. In addition, with the same water quality and communication distance, the system can achieve better BER performance.

  • [1]
    王林宁, 刘鹏展, 胡芳仁, 等. 面向6G网络的水下光通信系统[J]. 移动通信,2022,46(6):45-51. doi: 10.3969/j.issn.1006-1010.2022.06.007

    WANG Linning, LIU Pengzhan, HU Fangren, et al. Underwater optical wireless communication system for 6G networks[J]. Mobile Communications,2022,46(6):45-51. doi: 10.3969/j.issn.1006-1010.2022.06.007
    [2]
    刘杰徽, 何英, 胡锋, 等. 基于PIN的水下可见光双向语音通信试验研究[J]. 光通信研究,2022(3):65-71.

    LIU Jiehui, HE Ying, HU Feng, et al. Experimental research on underwater visible light two-way voice communication based on PIN[J]. Study on Optical Communications,2022(3):65-71.
    [3]
    王毅凡, 周密, 宋志慧. 水下无线通信技术发展研究[J]. 通信技术,2014,47(6):589-594.

    WANG Yifan, ZHOU Mi, SONG Zhihui. Development of underwater wireless communication technology[J]. Communications Technology,2014,47(6):589-594.
    [4]
    辛光红, 汪源, 丁学用. 水下激光通信技术及发展研究[J]. 电子世界,2020(6):89-92.

    XIN Guanghong, WANG Yuan, DING Xueyong. Research on underwater laser communication technology and its development[J]. Electronics World,2020(6):89-92.
    [5]
    焦瑜呈. 海水中电磁波特性的分析与研究[J]. 舰船电子工程,2018,38(8):176-179.

    JIAO Yucheng. Analysis and research of the electromagnetic properties of seawater[J]. Ship Electronic Engineering,2018,38(8):176-179.
    [6]
    敖珺, 姚猛, 马春波. 基于MIMO的水下LED光通信系统的设计[J]. 光通信技术,2017,41(9):24-27.

    AO Jun, YAO Meng, MA Chunbo. Design of MIMO-based underwater LED light communication system[J]. Optical Communication Technology,2017,41(9):24-27.
    [7]
    JAMALI M V, SALEHI J A, AKHOUNDI F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communications,2017,65(3):1176-1192. doi: 10.1109/TCOMM.2016.2642943
    [8]
    傅玉青, 黄诚惕, 杜永兆. MIMO水下无线光通信系统性能解析研究[J]. 光电子∙激光,2019,30(3):250-255.

    FU Yuqing, HUANG Chengti, DU Yongzhao. Performance analysis of MIMO underwater wireless optical communication system[J]. Journal of Optoelectronics ∙ Laser,2019,30(3):250-255.
    [9]
    ARVANITAKIS G N, BIAN R, MCKENDRY J J D, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays[J]. IEEE Photonics Journal,2019,12(2):1-10.
    [10]
    李金佳, 叶德茂, 王林宁, 等. PMT阵列在水下MIMO无线光通信中的应用[J]. 红外与激光工程, 2021, 50(8): 293-301.

    LI Jinjia, YE Demao, WANG Linning, et al. MIMO scheme for underwater wireless optical communication system using PMT array[J]. Infrared and Laser Engineering, 2021, 50(8): 293-301.
    [11]
    CHEN Xiao, DAI Yizhan, TONG Zhijian, et al. Demonstration of a 2  ×  2 MIMO-UWOC system with large spot against air bubbles[J]. Applied Optics,2022,61(1):41-48. doi: 10.1364/AO.443498
    [12]
    沈天浩. 基于蓝绿可见光的水下无线通信系统研究[D]. 黄石: 湖北师范大学, 2021 .

    SHEN Tianhao. Research on underwater wireless communication system based on blue, green and visible light[D]. Huangshi: Hubei Normal University, 2021.
    [13]
    JOHNSON L J, JASMAN F, GREEN R J, et al. Recent advances in underwater optical wireless communications[J]. Underwater Technology:International Journal of the Society for Underwater,2014,32(3):167-175. doi: 10.3723/ut.32.167
    [14]
    顾金波. 水下蓝光LED视频传输系统设计与实现[D]. 桂林: 桂林电子科技大学, 2021 .

    GU Jinbo. Design and implementation of underwater blue LED video transmission system[D]. Guilin: Guilin University of Electronic Technology, 2021 .
    [15]
    吴聚章. 水下可见光通信系统设计及实现[D]. 哈尔滨: 哈尔滨工程大学, 2014.

    WU Juzhang. Design and implementation of underwater visible light communication system[D]. Harbin: Harbin Engineering University, 2014.
    [16]
    孙若凡. MIMO水下无线光通信系统信道建模与性能仿真分析[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    SUN Ruofan. Channel modeling and performance simulation analysis of MIMO underwater wireless optical communication system[D]. Harbin: Harbin Engineering University, 2021.
    [17]
    GILERSON A, ZHOU J, HLAING S, et al. Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition[J]. Optics Express,2007,15(24):15702. doi: 10.1364/OE.15.015702
    [18]
    吴永森, 张士魁, 张绪琴, 等. 海水黄色物质光吸收特性实验研究[J]. 海洋与湖沼,2002,33(4):402-406.

    WU Yongsen, ZHANG Shikui, ZHANG Xuqin, et al. Experimental study on the optical absorption property of yellow substance in seawater[J]. Oceanologia et Limnologia Sinica,2002,33(4):402-406.
    [19]
    MOREL A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters)[J]. Journal of Geophysical Research,1988,93(C9):10749. doi: 10.1029/JC093iC09p10749
    [20]
    梁赫西, 沈天浩, 王振亚, 等. 双光源水下无线光通信系统的研究与实现[J]. 红外与激光工程,2021,50(9):312-320.

    LIANG Hexi, SHEN Tianhao, WANG Zhenya, et al. Research and design of underwater wireless optical communication system with dual light sources[J]. Infrared and Laser Engineering,2021,50(9):312-320.
    [21]
    李燕龙. 水下LED成像MIMO通信关键技术研究[D]. 桂林: 桂林电子科技大学, 2020.

    LI Yanlong. Research on key technologies of underwater LED imaging MIMO communication[D]. Guilin: Guilin University of Electronic Technology, 2020.
    [22]
    刘源, 张刚. 可靠UDP协议栈的FPGA实现[J]. 火力与指挥控制,2017,42(7):139-143.

    LIU Yuan, ZHANG Gang. FPGA implementation of a reliable UDP protocol stack[J]. Fire Control & Command Control,2017,42(7):139-143.
  • Related Articles

    [1]GU Shuangling, ZHANG Feng, PENG Xia, ZHAO Li. Virtual time reversal method for channel equalization in non-orthogonal multiple access optical communication systems[J]. Journal of Applied Optics, 2024, 45(2): 475-484. DOI: 10.5768/JAO202445.0208005
    [2]YANG Borui, ZHAO Li, LU Ying, ZHOU Yu. Research on MIMO channel capacity for adaptive power allocation visible light[J]. Journal of Applied Optics, 2020, 41(3): 626-630. DOI: 10.5768/JAO202041.0308002
    [3]Wu Shenghan, Wang Zheng, Cao Liangcai, Zhang Hao, Jin Guofan. Volume holographic display technology based on angular multiplexing[J]. Journal of Applied Optics, 2017, 38(2): 215-220. DOI: 10.5768/JAO201738.0202002
    [4]Su Yuwei, Bi Mingzhe, Liu Peng, Zhang Yan, Feng Xianglian, Wu Zhihang, Li Xiaoyan, Zhang Peng, Wang Tianshu, Wang Jian, Wu Qi, Wang Xiaoting. 20 Gbit/s atmospheric laser communication based on dense wavelength division multiplexing[J]. Journal of Applied Optics, 2017, 38(1): 136-139. DOI: 10.5768/JAO201738.0107004
    [5]LIU Yu, FANG Qiang, JIN Xin-yu. Channel characteristics of stimulated Raman scattering with dispersion effect in optical fiber communication system[J]. Journal of Applied Optics, 2007, 28(5): 608-613.
    [6]LI Rui, ZHAO Hong-li, ZENG De-xian. Freespace laser communication and its key technology[J]. Journal of Applied Optics, 2006, 27(2): 152-154.
    [7]KUANG Zi-li. Research of the design method and some important concepts for spacetoground optical communication[J]. Journal of Applied Optics, 2005, 26(6): 54-57.
    [8]YIN Zhi-guo, HE Jun, HUANG Chang-chun, DENG Dai-zu. Experiment Analysis of Influence of Atmosphere Stochastic Channel on Laser Transmission[J]. Journal of Applied Optics, 2005, 26(4): 33-35.
    [9]ZHANG Wen-tao, ZHU Bao-hua. The Study for Laser Beam Transmission Character in Atmosphere Rondom Channer by Using CCD[J]. Journal of Applied Optics, 2004, 25(5): 33-36.
    [10]LI Xiao-feng, CHEN Yan, HU Yu. The Analysis of Wavelength Selection for Space-to-Ground Laser Communication[J]. Journal of Applied Optics, 2004, 25(1): 30-33.

Catalog

    Article views (258) PDF downloads (72) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return