Su Yuwei, Bi Mingzhe, Liu Peng, Zhang Yan, Feng Xianglian, Wu Zhihang, Li Xiaoyan, Zhang Peng, Wang Tianshu, Wang Jian, Wu Qi, Wang Xiaoting. 20 Gbit/s atmospheric laser communication based on dense wavelength division multiplexing[J]. Journal of Applied Optics, 2017, 38(1): 136-139. DOI: 10.5768/JAO201738.0107004
Citation: Su Yuwei, Bi Mingzhe, Liu Peng, Zhang Yan, Feng Xianglian, Wu Zhihang, Li Xiaoyan, Zhang Peng, Wang Tianshu, Wang Jian, Wu Qi, Wang Xiaoting. 20 Gbit/s atmospheric laser communication based on dense wavelength division multiplexing[J]. Journal of Applied Optics, 2017, 38(1): 136-139. DOI: 10.5768/JAO201738.0107004

20 Gbit/s atmospheric laser communication based on dense wavelength division multiplexing

More Information
  • Received Date: July 18, 2016
  • Revised Date: August 31, 2016
  • Due to urgent requirement for high speed transmission, digital atmospheric laser communication system based on double channel dense wavelength division multiplexing (DWDM) is experimentally demonstrated. Optical carriers are provided by two lasers at 1539.76 nm and 1540.55 nm respectively, and intensity modulation is adopted. After being multiplexed and amplified, DWDM signals are transmitted through an optical antenna. Spectrums, waveforms and eye diagrams are measured at receiver after transmission in the atmosphere via 1km. Experimental results show that DWDM signals are de-multiplexed in weak turbulence, and waveforms and eye diagrams are observed clearly. The Q-factors are more than 5 when transmitting 20 Gbit/s modulated signals simultaneously.
  • [1]
    王佳, 俞信.自由空间光通信技术的研究现状和发展方向综述[J].光学技术, 2005, 31(2): 259-262. doi: 10.3321/j.issn:1002-1582.2005.02.025

    Wang Jia, Yu Xin. Free-space optical communication's current situation and development trend[J]. Optical Technique, 2005, 31(2): 259-262. doi: 10.3321/j.issn:1002-1582.2005.02.025
    [2]
    Ai Y, Xiong Z, Chen J, et al. The analysis of 7.5 Gbps 40 km FSO experiments[C]. US: IEEE, 2012. https://ieeexplore.ieee.org/document/6280759
    [3]
    Fitz M P, Halford T R, Kose C. Adaptive and reliably acknowledged FSO communications[J]. SPIE, 2015, 9465: 94650Z-1-10. http://cn.bing.com/academic/profile?id=3111165337f637a95d5f05b519a643c7&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    Liu P, Kazaura K, Wakamori K, et al. Studies on C2n and its effects on free space optical communication system[C]. US: IEEE, 2010.
    [5]
    Ciaramella E, Arimoto Y, Contestabile G, et al. 1.28 Terabit/s (32×40 Gbit/s) WDM transmission system for free space optical communications[J]. IEEE Journal on selected Areas in Communications, 2009, 27(9): 1639-1645. doi: 10.1109/JSAC.2009.091213
    [6]
    Sacchieri V, De S V, Corsi N, et al. DWDM transparent FSO system for in/outdoor applications at high bit rates[C]. US: IEEE, 2007. https://ieeexplore.ieee.org/document/4296326
    [7]
    姜会林, 安岩, 张雅琳, 等.空间激光通信现状、发展趋势及关键技术分析[J].飞行器测控学报, 2015, 34(3): 207-217. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201503001

    Jiang Huilin, An Yan, Zhang Yalin, et al. Analysis of the status, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT & C Technology, 2015, 34(3): 207-217. http://d.old.wanfangdata.com.cn/Periodical/fxqckxb201503001
    [8]
    Chan V W S. Free-space optical communications[J]. Lightwave Technol., 2006, 24(12): 4750-4762. doi: 10.1109/JLT.2006.885252
    [9]
    Salehiomran A, Salehi J A. Spatial heterodyning optical code division multiple access technique for near-field free-space optical communication systems[J]. Journal of Optical Communications & Networking, 2009, 1(5): 498-511. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=62d89e063db9efba268881d291039232
    [10]
    De S V, Sacchieri V, Moreolo M S, et al. DWDM Transparent FSO System for ultrahigh bit rate applications[C]. US: IEEE, 2007. https://ieeexplore.ieee.org/document/4386435
    [11]
    Patnaik B, Sahu P K. Novel QPSK modulation for DWDM free space optical communication system[C]. US: IEEE, 2012. https://ieeexplore.ieee.org/document/6198168
    [12]
    Xiong Z, Yong A, Xin S. Experiment of 5 Gb/s DWDM free space optical communication over 4.6 km[J]. Infrared & Laser Engineering, 2011, 40(10): 1959-1962. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201110026
    [13]
    Hsu H Y, Lu W C, Ghassemlooy Z, et al. 2×80 Gbit/s DWDM bidirectional wavelength reuse optical wireless transmission[J]. IEEE Photonics TechnologyLetters, 2013, 5(4): 128-131. https://ieeexplore.ieee.org/document/6777792
  • Related Articles

    [1]PENG Jiachi, GUO Jianzhong, LI Yanlong, ZHANG Liang, ZHOU Ying, AI Yong, LIANG Hexi. Application of channel multiplexing technology in LED underwater visible light communication[J]. Journal of Applied Optics, 2023, 44(5): 1133-1141. DOI: 10.5768/JAO202344.0508002
    [2]LIAO Yucheng, WU Shiqian, DENG Gaoxu, CHEN Bin. Fast discontinuous phase unwrapping based on orientation diagram transformation[J]. Journal of Applied Optics, 2021, 42(4): 678-684. DOI: 10.5768/JAO202142.0402007
    [3]LIU Sheng’en, CHEN Xiangning, WANG Decheng. Edge collapse of UDSM based on centroidal Voronoi diagram reconstruction[J]. Journal of Applied Optics, 2020, 41(1): 127-133. DOI: 10.5768/JAO202041.0102010
    [4]Liu Xianzhu, Wang Tianshu, Chen Junda, Zhang Xinmeng, Yang Jinhua, Jiang Huilin. Transmission performance of 50 Gbit/s high-speed laser communications with QPSK modulation[J]. Journal of Applied Optics, 2018, 39(5): 757-761. DOI: 10.5768/JAO201839.0507001
    [5]Bi Mingzhe, Su Yuwei, Ma Wanzhuo, Liu Xianzhu, Ci Mingru, Jia Qingsong, Wang Tianshu, Liu Jingjiao. Space laser communication system based on fiber laser phased array[J]. Journal of Applied Optics, 2016, 37(6): 938-941. DOI: 10.5768/JAO201637.0608001
    [6]Leng Dan, HAO Yao-hong. Method for fiber nonlinearity mitigation in coherent optical OFDM systems based on constellation restoration[J]. Journal of Applied Optics, 2015, 36(1): 150-154. DOI: 10.5768/JAO201536.0108003
    [7]LI Xu-dong, MI Jian-jun, RU Zhi-bing, ZHANG An-feng, HU Zheng-liang, ZHOU Xin-ni, LI Bao-jun, ZHANG Wan-lin, LIU Bing. Cat-s-eye effect based on active laser detection[J]. Journal of Applied Optics, 2014, 35(2): 342-347.
    [8]LIN Qiao-wen, HU Man-li, HAO Jin-bo, LI Lin-sen. Properties of wavelength-division demultiplexer based on double-doped LiNbO3 crystal[J]. Journal of Applied Optics, 2007, 28(6): 788-792.
    [9]LIU Yu, FANG Qiang, JIN Xin-yu. Channel characteristics of stimulated Raman scattering with dispersion effect in optical fiber communication system[J]. Journal of Applied Optics, 2007, 28(5): 608-613.
    [10]LI Xiao-feng, CHEN Yan, HU Yu. The Analysis of Wavelength Selection for Space-to-Ground Laser Communication[J]. Journal of Applied Optics, 2004, 25(1): 30-33.
  • Cited by

    Periodical cited type(8)

    1. 纪海莹,王天枢,熊浩,马万卓,袁泉,孙梦茹,林鹏. 位于第三近红外窗口的平坦光纤超连续谱产生. 应用光学. 2021(03): 565-570 . 本站查看
    2. 熊浩,王天枢,纪海莹,袁泉,马万卓,林鹏,孙梦茹. 基于类噪声脉冲抽运的平坦超连续谱光源. 应用光学. 2021(04): 743-748 . 本站查看
    3. 蔡小庆,陈晓芳,云彩霞,鲁小利. 光强度对大气激光通信信道衰落的影响分析. 激光杂志. 2019(03): 105-108 .
    4. 曹树伟,杨慧玲. 高功率半导体激光通信系统的调制技术研究. 激光杂志. 2019(04): 136-139 .
    5. 李倩,王艳玲. 基于激光通信的智慧医疗信息系统. 激光杂志. 2019(05): 197-201 .
    6. 朱颖,项祖干. WDM光网络中激光通信信道节能调度. 激光杂志. 2018(06): 173-177 .
    7. 刘显著,王天枢,陈俊达,张欣梦,杨进华,姜会林. 采用QPSK调制的50 Gbit/s高速大气激光通信传输特性研究. 应用光学. 2018(05): 757-761 . 本站查看
    8. 朱居正. 无线激光通信网络任务均衡分配系统设计. 科技通报. 2017(12): 149-152 .

    Other cited types(3)

Catalog

    Article views (808) PDF downloads (626) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return