HUANG Xiying, WANG Jie, WANG Jiaoying, YAN Li, LU Yang, LI Liangfu. Real-time implementation of multi-source image fusion algorithm[J]. Journal of Applied Optics, 2022, 43(4): 676-681. DOI: 10.5768/JAO202243.0402002
Citation: HUANG Xiying, WANG Jie, WANG Jiaoying, YAN Li, LU Yang, LI Liangfu. Real-time implementation of multi-source image fusion algorithm[J]. Journal of Applied Optics, 2022, 43(4): 676-681. DOI: 10.5768/JAO202243.0402002

Real-time implementation of multi-source image fusion algorithm

More Information
  • Received Date: May 06, 2022
  • Revised Date: June 10, 2022
  • Available Online: June 22, 2022
  • Aiming at the real-time requirements of image fusion in the infrared and visible light, a real-time implementation method to solve the current high-definition or ultrahigh-definition multi-source Laplacian pyramid image fusion was proposed. Based on the video data stream, a parallel processing pipeline architecture of Laplacian pyramid system was designed. The time delay and optimization ideas between the pipelines were analyzed. All the delay time differences were compensated through on-chip cache to achieve the equal length of pipeline and guarantee the integrity of data processing in the whole algorithm. This method could realize 5-level Laplacian pyramid fusion of dual-channel 1080×1920@60 Hz video images on XILINX 7 series field programmable gate array (FPGA) and above. The experimental results show that this real-time method has better fusion effect, with only 10.535 ms of one-frame image fusion and the processing delay is less than 1 ms.

  • [1]
    王士乐. 多源图像信息融合与增强技术研究[D]. 上海: 东华大学, 2012.

    WANG Shile. Research of information fusion and enhancement of multi-source image[D]. Shanghai: Donghua University, 2012.
    [2]
    延翔. 多源图像融合算法研究[D]. 西安: 西安电子科技大学, 2018.

    YAN Xiang. Research on algorithm for multi-source image fusion[D]. Xi’an: Xidian University, 2018.
    [3]
    林子慧. 基于多尺度变换的红外与可见光图像融合技术研究[D]. 北京: 中国科学院大学, 2019.

    LIN Zihui. Research on infrared and visible image fusion based on multi-scale transform[D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [4]
    吕勇. 多视场红外与可见光图像融合配准技术研究[D]. 西安: 西安工业大学, 2020.

    LYU Yong. Research on multi-filed infrared and visible image fusion registration technology[D]. Xi’an: Xi’an Technological University, 2020.
    [5]
    李宇琦, 赵海涛. 基于红外和可见光图像逐级自适应融合的场景深度估计[J]. 应用光学,2020,41(1):24-32. doi: 10.5768/JAO202041.0101004

    LI Yuqi, ZHAO Haitao. Depth estimation based on adaptive fusion of infrared and vision light images progressively[J]. Journal of Applied Opitics,2020,41(1):24-32. doi: 10.5768/JAO202041.0101004
    [6]
    陈清江, 汪泽百, 柴昱洲. 改进VGG网络的多聚焦图像的融合方法[J]. 应用光学,2020,14(3):500-507.

    CHEN Qingjiang, WANG Zebai, CHAI Yuzhou. Multi-focus image fusion method based on improved VGG network[J]. Journal of Applied Opitics,2020,14(3):500-507.
    [7]
    黄文博, 严华. 基于两尺度分解和特征提取的红外与可见光图像融合[J]. 现代计算机,2021,16(6):148-153.

    HUANG Wenbo, YAN Huan. Infrared and visible image fusion based on two-scale decomposition and extraction[J]. Modern Computer,2021,16(6):148-153.
    [8]
    赵鑫. 基于DSP的多源图像融合系统研究[D]. 安徽: 安徽理工大学, 2020.

    ZHAO Xin. Research on multi-source image fusion system based on DSP[D]. Anhui: Anhui University of Science and Technology, 2020.
    [9]
    葛飞. 基于多核DSP的图像融合技术研究[D]. 北京: 北京理工大学, 2016.

    GE Fei. Research of image fusion based on multicore DSP[D]. Beijing: Beijing Institute of Technology, 2016.
    [10]
    杨峰. 多DSP图像融合算法设计及优化[D]. 江苏: 南京理工大学, 2014.

    YANG Feng. Design and optimization of image fusion algorithm based on multicore DSP[D]. Jiangsu: Nanjing Institute of Technology, 2014.
    [11]
    刘冰. 基于FPGA的图像融合校正算法设计与实现[D]. 北京: 北京理工大学, 2018.

    LIU Bing. Design and implementation of imgae fusion correction algorithm based on FPGA. Beijing: Beijing Institute of Technology, 2018.
    [12]
    汤伟. 基于FPGA的红外图像与微光图像融合研究[D]. 湖南: 中南大学, 2012.

    TANG Wei. Infrared and low-light-level image fusion research based on FPGA. Hunan: Central South University, 2012.
    [13]
    张昊. 红外与CCD图像的融合研究及FPGA设计[D]. 西安: 西安科技大学, 2015.

    ZhANG Hao. Infrared and CCD image fusion research and hardware design based on FPGA. Xi’an: Xi’an University of Science and Technology, 2015.
    [14]
    卢蓉, 高昆, 倪国强, 等. 基于FPGA的多分辨率图像融合系统实时实现的研究[J]. 激光与红外, 2007, 37(7): 1018-1021.

    LU Rong, GAO Kun, NI Guoqiang, et al. Study on real-time implementation of multi-resolution image fusion system based on FPGA[J]. Laser & Infrared. 2007, 37(7): 1018-1021.
    [15]
    马永强, 侯宏旭, 王顺利. 基于归一化标量权重映射与融合金字塔的彩图对比度增强算法[J]. 计算机应用研究,2015,32(10):3187-3190. doi: 10.3969/j.issn.1001-3695.2015.10.072

    MA Yongqiang, HOU Hongxu, WANG Shunli. Image contrast enhancement algorithm based on normalized scalar weight map coupled fusion pyramid[J]. Application Research of Compluters,2015,32(10):3187-3190. doi: 10.3969/j.issn.1001-3695.2015.10.072
  • Related Articles

    [1]ZHU Jinquan, YANG Xueli, SUN Kecheng, LIU Donghui, NIU Zhigang. Design and application of photoelectric auxiliary decision system for FPSO crude oil offloading[J]. Journal of Applied Optics, 2022, 43(5): 870-878. DOI: 10.5768/JAO202243.0501007
    [2]LI Dong, GUO Xi, WANG Di, MA Pengbo, SUN Weidong, WANG Mingji. Laser detection of oil-gas diffusion in central drain pipe of floating-roof tank[J]. Journal of Applied Optics, 2021, 42(5): 913-918. DOI: 10.5768/JAO202142.0507001
    [3]WU Bin, YANG Yanzhao, YING Chengping, LIU Hongyuan, ZHANG Peng, WANG Hengfei. Application of terahertz spectroscopy in THDCPD isomers detection[J]. Journal of Applied Optics, 2020, 41(4): 786-790. DOI: 10.5768/JAO202041.0409903
    [4]FU Hongtao, YANG Erlong, LI Cunlei, LIU Jianmei, DONG Chi, SONG Lijia, GUO Chunping. Quantitative identification of hydrocarbon concentration in drilling fluid based on laser Raman spectroscopy[J]. Journal of Applied Optics, 2019, 40(4): 692-698. DOI: 10.5768/JAO201940.0407003
    [5]Liu Jianmei, Li Cunlei, Gao Peng, Wang Rui, Zhu Ning, Fu Hongtao. Identification method of crude oil in petroleum pipeline based on laser Raman detection technology[J]. Journal of Applied Optics, 2018, 39(3): 436-441. DOI: 10.5768/JAO201839.0307002
    [6]Sun Chen, Zhao Yiwu, An Zhongde, Fu Qiang, Zhan Juntong, Duan Jin. Effect of concentration on propagation characteristics of polarized laser in oil-mist diffusion[J]. Journal of Applied Optics, 2017, 38(6): 1012-1017. DOI: 10.5768/JAO201738.0607002
    [7]FENG Rui-shu, LI Wei-wei, ZHOU Qing-li, MU Kai-jun, ZHANG Liang-liang, ZHANG Cun-lin. Vibrational spectrum of RDX investigated with terahertz time-domain spectroscopy[J]. Journal of Applied Optics, 2009, 30(6): 907-910.
    [8]MA Yun-bin, HU Zhi-xin, YANG Jing, MA Jun-peng. Oil pipeline security monitoring system based on fiber Bragg grating sensor[J]. Journal of Applied Optics, 2009, 30(3): 505-509.
    [9]CHENG Shu-chun, ZHANG Yan-ping. Application of fiber grating sensor for oil leak detection in oil industry[J]. Journal of Applied Optics, 2008, 29(3): 441-443.
    [10]WANG Zhong-dong, WANG Yu-tian. A fiberoptic sensing liquid level measuring system for oil storage tanks[J]. Journal of Applied Optics, 2006, 27(1): 69-72.
  • Cited by

    Periodical cited type(5)

    1. 袁美桂,魏志强,轩新想. 一种新的机载光电侦察系统目标定位精度分析方法. 光学技术. 2024(02): 215-219 .
    2. 刘召庆,张芳,朱镭,贾兆辉,文江华,秦川,张兰兰. 巡飞弹目标定位精度分析. 应用光学. 2022(04): 592-598 . 本站查看
    3. 王冠,王惠林,骞琨,沈宇,边赟. 机载光电系统目标定位大气折射修正研究. 应用光学. 2022(04): 641-647 . 本站查看
    4. 马经帅,于洵,刘晓宇,韩峰,丁良华. 高精度光电跟踪系统中伺服稳定控制算法研究. 应用光学. 2021(04): 597-607 . 本站查看
    5. 秦川,陶忠,桑蔚,张鹏,海云波,梅甫麟. 基于粒子滤波的运动目标光电定位仿真研究. 应用光学. 2020(01): 10-17 . 本站查看

    Other cited types(2)

Catalog

    Article views (637) PDF downloads (98) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return