FU Hongtao, YANG Erlong, LI Cunlei, LIU Jianmei, DONG Chi, SONG Lijia, GUO Chunping. Quantitative identification of hydrocarbon concentration in drilling fluid based on laser Raman spectroscopy[J]. Journal of Applied Optics, 2019, 40(4): 692-698. DOI: 10.5768/JAO201940.0407003
Citation: FU Hongtao, YANG Erlong, LI Cunlei, LIU Jianmei, DONG Chi, SONG Lijia, GUO Chunping. Quantitative identification of hydrocarbon concentration in drilling fluid based on laser Raman spectroscopy[J]. Journal of Applied Optics, 2019, 40(4): 692-698. DOI: 10.5768/JAO201940.0407003

Quantitative identification of hydrocarbon concentration in drilling fluid based on laser Raman spectroscopy

More Information
  • Received Date: November 15, 2018
  • Revised Date: February 18, 2019
  • The hydrocarbons in the drilling fluid can indicate the hydrocarbon content of the formation.The detection of oil and gas concentration in the stratum is of great significance for the identification of true and false oil and gas, especially for the accurate interpretation and evaluation of oil and gas layers.Based on the unique advantages of continuous, rapid and direct detection of samples by laser Raman spectroscopy, we carried out researches on quantitative Raman detection of hydrocarbon concentration in drilling fluid.The laser Raman online detection system was built under laboratory conditions which was used to detect C7-C14 normal paraffin and benzene.The n-octane was selected as the marker of alkanes in water-based drilling fluid and the mathematical models of different characteristic peaks of n-octane in water-based drilling fluid were established based on the least square method.The vibration intensity at the frequency shift of 1 298 cm-1 has a good linear relationship with n-octane content.The benzene was selected as the marker hydrocarbon in the diesel oil drilling fluid and the mathematical model of different characteristic peaks of benzene in oil drilling fluid were established based on the least square method.The vibration intensity at the frequency shift of 986 m-1 has a good linear relationship between the vibration intensity and the content of added benzene.The experimental results show that the laser Raman spectroscopy can be used for in-situ detection of hydrocarbon concentration in drilling fluid and has good stability and repeatability in order to provide a new way for the inversion of oil and gas concentration and improving the accuracy of oil and gas reservoir identification.
  • [1]
    吴刚.重烃组分在现场录井中输送方法探讨[J].中国石油和化工标准与质量, 2012, 32(S1):210. http://www.cnki.com.cn/Article/CJFDTotal-HGBJ2012S1199.htm

    WU Gang. Discussion on transportation method of heavy hydrocarbon components in field logging[J].China Petroleum and Chemical Standard and Quality, 2012, 32(S1):210. http://www.cnki.com.cn/Article/CJFDTotal-HGBJ2012S1199.htm
    [2]
    蒋淑英.大庆油田废钻井液生物毒性及生物效应的研究[D].大庆: 大庆石油学院, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1224931

    JIANG Shuying. The study of bio-Toxicoty and biological effects of the wastes drilling fluids from Daqing Oilfield[D].Daqing: Northeast Petroleum University, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1224931
    [3]
    刘一丹.轻烃检测分析技术在吉林油田的应用[J].石油知识, 2014(5): 30-31. doi: 10.3969/j.issn.1003-4609.2014.05.013

    LIU Yidan. Application of light hydrocarbon detection and analysis technology in Jilin Oilfield[J].Petroleum Knowledge, 2014(5): 30-31. doi: 10.3969/j.issn.1003-4609.2014.05.013
    [4]
    吕玉祥, 董肖节, 郭峰.基于红外差分检测的甲烷气体传感器[J].应用光学, 2012, 33(4):747-751. http://www.yygx.net/CN/abstract/abstract10036.shtml

    LV Yuxiang, DONG Xiaojie, GUO Feng. Methane gas sensor based on infrared difference detection[J].Journal of Applied Optics, 2012, 33(4):747-751. http://www.yygx.net/CN/abstract/abstract10036.shtml
    [5]
    CUDDY, STEVE.The 49th SPWLA annual symposium[J].Petrophysics, 2008, 48(5):409-412.
    [6]
    陈代伟, 袁伯琰, 杨君.钻井液中烃类气体含量的检测[J].油气田地面工程, 2007, 26(7):52. doi: 10.3969/j.issn.1006-6896.2007.07.034

    CHEN Daiwei, YUAN Boyan, YANG Jun. Detection of hydrocarbon gas content in drilling fluid[J].Oil-Gasfield Surface Engineering, 2007, 26(7):52. doi: 10.3969/j.issn.1006-6896.2007.07.034
    [7]
    TANG M M, ZHAGN J L.Raman spectra of hydrocarbon in returned drilling fluid using co-focal laser Raman microscopy[J].Advanced Materials Research, 2013, 616:715-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.616-618.715
    [8]
    郭忠.微型拉曼光谱仪的结构设计与数据处理方法研究[D].重庆: 重庆大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-2010217933.htm

    GUO Zhong.Design the Micro-Raman spectroscopy and study on data processing of Raman spectrum[D].Chongqing: Chongqing University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-2010217933.htm
    [9]
    张正勇, 桂冬冬, 马蕴文, 等.高维激光拉曼光谱的构建与降噪处理评价研究[J].应用激光, 2018, 38(3):468-473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg201803024

    ZHANG Zhengyong, GUI Dongdong, MA Yunwen, et al. Evaluation on the construction and noise reduction of high-dimensional laser Raman spectroscopy[J].Applied Laser, 2018, 38(3):468-473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg201803024
    [10]
    李柏霖.光谱法研究高分子薄膜及水溶性体系的结构与性能[D].杭州: 浙江理工大学, 2014.

    LI Bailin. Structures and properties of polymer thin films and water-soluble polymer mixtures studied by spectroscopy[D].Hangzhou: Zhejiang Sci-Tech University, 2014.
    [11]
    刘建美, 李存磊, 高鹏, 等.基于激光拉曼检测技术的输油管道原油鉴别方法[J].应用光学, 2018, 39(3):436-441. http://www.yygx.net/CN/abstract/abstract11129.shtml

    LIU Jianmei, LI Cunlei, GAO Peng, et al.Identification method of crude oil in petroleum pipeline based on laser Raman detection technology[J].Journal of Applied Optics, 2018, 39(3):436-441. http://www.yygx.net/CN/abstract/abstract11129.shtml
    [12]
    PRIVALOV V E, SHEMANIN V G.Measurement of the concentration of hydrocarbon molecules by Raman light lidar[J]. Measurement Techniques, 2016, 59(9):933-938. doi: 10.1007/s11018-016-1070-6
    [13]
    杜玲玲, 陈伟根, 顾朝亮, 等.应用拉曼光谱分析变压器油中溶解乙酸含量[J].光谱学与光谱分析, 2017, 37(9):2774-2779. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201709021

    DU Lingling, CHEN Weigen, GU Chaoliang, et al.Application of Raman spectroscopy to analyze acetic acid content dissolved in transformer oil[J].Spectroscopy and Spectral Analysis, 2017, 37(9):2774-2779. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201709021
    [14]
    陶家友, 徐代升, 梅孝安, 等.苯的激光拉曼光谱检测研究[J].应用光学, 2010, 31(2):273-276. doi: 10.3969/j.issn.1002-2082.2010.02.024

    TAO Jiayou, XU Daisheng, MEI Xiaoan, et al. Laser-Raman spectrum for detecting benzene[J].Journal of Applied Optics, , 2010, 31(2):273-276. doi: 10.3969/j.issn.1002-2082.2010.02.024
    [15]
    LIU W, DAI L H. Raman spectral analysis of low-content benzene concentration in gasoline with partial least squares based on interference peak subtraction[J]. Analytical Sciences, 2016, 32(8):861-866. doi: 10.2116/analsci.32.861
  • Related Articles

    [1]LIU Wei, MAO Yifan, HUO Sijia, YANG Shuai. Design of a spectroscopy-based detector for SO2 concentration in SF6 decomposition products[J]. Journal of Applied Optics.
    [2]CHAI Jinguo, YU Shancheng, ZHU Dandan, KANG Lixin, WANG Zhengtai, XU Lulu, REN Yuxuan, TONG Kai. Detection method for calibration of gas concentrations based on absorption peaks in frequency domain[J]. Journal of Applied Optics, 2024, 45(1): 142-149. DOI: 10.5768/JAO202445.0103002
    [3]Liu Jianmei, Li Cunlei, Gao Peng, Wang Rui, Zhu Ning, Fu Hongtao. Identification method of crude oil in petroleum pipeline based on laser Raman detection technology[J]. Journal of Applied Optics, 2018, 39(3): 436-441. DOI: 10.5768/JAO201839.0307002
    [4]Sun Chen, Zhao Yiwu, An Zhongde, Fu Qiang, Zhan Juntong, Duan Jin. Effect of concentration on propagation characteristics of polarized laser in oil-mist diffusion[J]. Journal of Applied Optics, 2017, 38(6): 1012-1017. DOI: 10.5768/JAO201738.0607002
    [5]Zhu Hong-xiu, Sun Lian-kun, Wang Zhong-hua, Nie Zhe, Liu Huan. Design of infrared methane gas concentration detection system[J]. Journal of Applied Optics, 2014, 35(5): 890-894.
    [6]Hu Yong-mao, Li Ru-heng, He Yun, Zhang Xue-qing, Li Mao-qiong, Zhu Yan. Preparation of Parylene-N ultrathin films and their applications in organic light emitting diodes[J]. Journal of Applied Optics, 2014, 35(4): 663-669.
    [7]PAN Chong-lin, XI Xiao-qiang, ZHANG Fu-mei. Using photonic crystal fiber grating sensor to measure temperature, strain and gas concentration simultaneously[J]. Journal of Applied Optics, 2013, 34(2): 374-380.
    [8]TAO Jia-you, XU Dai-sheng, MEI Xiao-an, MAO Li-xin. Laser-Raman spectrum for detecting benzene[J]. Journal of Applied Optics, 2010, 31(2): 273-276.
    [9]LI Wen-chao, SHA Xiao-peng, LIU Zheng-jun, LI Zhi-quan, FENG Lei, MA Bo-hua. Gas concentration measurement based on fiber-circled cavity ring-down method[J]. Journal of Applied Optics, 2009, 30(5): 831-835.
    [10]LU Jian-min, SHAO Li-tang, TANG Guang-hua, WANG Shi-min. Nonlinear compensation of in-situ monitoring SO2 concentration in flue gas by DOAS[J]. Journal of Applied Optics, 2008, 29(6): 859-862.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (1291) PDF downloads (38) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return