MA Jingshuai, YU Xun, LIU Xiaoyu, HAN Feng, DING Lianghua. Servo stabilization control algorithm in high-precision photoelectric tracking system[J]. Journal of Applied Optics, 2021, 42(4): 597-607. DOI: 10.5768/JAO202142.0401005
Citation: MA Jingshuai, YU Xun, LIU Xiaoyu, HAN Feng, DING Lianghua. Servo stabilization control algorithm in high-precision photoelectric tracking system[J]. Journal of Applied Optics, 2021, 42(4): 597-607. DOI: 10.5768/JAO202142.0401005

Servo stabilization control algorithm in high-precision photoelectric tracking system

More Information
  • Received Date: December 10, 2020
  • Revised Date: March 08, 2021
  • Available Online: June 20, 2021
  • Aiming at the problem of carrier vibration, system parameter perturbation, friction torque and external disturbance in photoelectric tracking and stabilization platform system that directly affect the stability accuracy of photoelectric tracking system, the deviation in the tracking system was suppressed from the servo controller control perspective to improve the stability accuracy and ensure its strong robustness in the complex environment. By establishing the mathematical model of the photoelectric tracking and stabilization platform system, the influence of disturbance torque, gyro noise and system parameter changes on the photoelectric tracking and stabilization platform was analyzed, and the compound control strategy based on the novel nonlinear extended state observer (NNESO) and sliding mode variable structure control (SMVSC) was designed. The results of theoretical derivation and simulation experiments show that this kind of compound control strategy has full adaptability and strong robustness to disturbance torque, external disturbance and system parameter perturbation. At the same time, compared with the control system without the novel nonlinear extended state observer, it proves that the compound control strategy has higher stability accuracy and faster dynamic response, which has good effect in compensating the nonlinearity and can enhance the anti-disturbance ability of the photoelectric tracking and stabilization platform.
  • [1]
    郑春艳, 张红刚, 冯兴伟, 等. 机载光电稳定平台自抗扰控制研究[J]. 电光与控制,2017,24(2):51-54.

    ZHENG Chunyan, ZHANG Honggang, FENG Xingwei, et al. ADRC of airborne electro-optical stabilized platform[J]. Electronics Optics & Control,2017,24(2):51-54.
    [2]
    冯杨, 徐庆九. 基于改进型BP神经网络的PID控制算法[J]. 控制与工程,2012,5(19):119-122.

    FENG Yang, XU Qingjiu. PID control algorthm based on improved BP neural network[J]. Control Engineerg of China,2012,5(19):119-122.
    [3]
    AMIN J, FRIEDLAND B, HARNOY A. Implementation of a friction estimation and compensation technique[J]. IEEE Transaction on Control Systems,1996,17(4):71-76.
    [4]
    孟淑平, 朱家厅, 张立娟, 等. 基于新型扩张状态观测器的PMSM周期性转速脉冲抑制方法[J]. 微电机,2020,53(6):58-64. doi: 10.3969/j.issn.1001-6848.2020.06.012

    MENG Jiaoping, ZHU Jiating, ZHANG Lijuan, et al. PMSM periodic speed ripple minimization based on new type extended state observer[J]. Micro Motors,2020,53(6):58-64. doi: 10.3969/j.issn.1001-6848.2020.06.012
    [5]
    韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 15-28.

    HAN Jingqing. Active disturbance rejection control technology—control technology for estimating and compensating uncertain factors[M]. Beijing: National Defense Industry Press, 2008: 15-28.
    [6]
    魏伟, 戴明, 李嘉全, 等. 基于重复-自抗扰控制的航空光电稳定平台控制系统设计[J]. 吉林大学学报,2015,45(6):1924-1932.

    DAI Wei, DAI Ming, LI Jiaquan, et al. Design of airborne opto-electric platform control system based on ADRC and repetitive control theory[J]. Journal of Jilin University,2015,45(6):1924-1932.
    [7]
    王春阳, 彭业光, 史红伟, 等. 光电稳定平台线性自抗扰控制器设计[J]. 电光与控制,2018,11(11):112-115, 119. doi: 10.3969/j.issn.1671-637X.2018.11.022

    WANG Chunyang, PENG Yeguang, SHI Hongwei, et al. Design of a linear disturbance rejection controller for photoelectric stabilized platform[J]. Electronics Optics & Control,2018,11(11):112-115, 119. doi: 10.3969/j.issn.1671-637X.2018.11.022
    [8]
    高为炳. 变结构控制的理论及设计方法[M]. 北京: 科学出版社, 1996: 1-49.

    GAO Weibing. Variable structure control theory and design method[M]. Beijing: Science Press, 1996: 1-49.
    [9]
    吴玉敬, 纪明. 光电吊舱大速率平稳跟踪补偿技术研究[J]. 应用光学,2006,27(4):293-297.

    WU Yujing, JI Ming. Research on high-speed smooth tracking compensation technology of photoelectric pod[J]. Journal of Applied Optics,2006,27(4):293-297.
    [10]
    邹志峰, 闫峰. 机载光电侦察稳定平台系统分析[J]. 机械工程师,2007(4):39-40. doi: 10.3969/j.issn.1002-2333.2007.04.020

    ZOU Zhifeng, YAN Feng. Analysis for the system of airborne opto-electronic reconnaissance platforms[J]. Mechanical Engineer,2007(4):39-40. doi: 10.3969/j.issn.1002-2333.2007.04.020
    [11]
    IOANNOU P A, SUN J. Robust adaptive control[M]. USA: Prentice-Hall Inc., 1996: 75-76.
    [12]
    叶超, 崔宁豪, 马正雷, 等. 基于LuGre 模型的伺服系统摩擦补偿策略研究[J]. 微电机,2019,52(5):53-56. doi: 10.3969/j.issn.1001-6848.2019.05.010

    YE Chao, CUI Ninghao, MA Zhenglei, et al. Research on friction compensation strategy of servo system based on LuGre model[J]. Micro Motors,2019,52(5):53-56. doi: 10.3969/j.issn.1001-6848.2019.05.010
    [13]
    任彦, 张晓飞, 刘慧, 等. 快速滑模干扰观测器在稳定平台中的应用[J]. 控制工程,2018,25(8):1572-1579.

    REN Yan, ZHANG Xiaofei, LIU Hui, et al. Application of a fast sliding mode disturbance observer in a stable platform[J]. Control Engineering of China,2018,25(8):1572-1579.
    [14]
    SONG Haitao, ZHANG Tao. Fast integrated guidance and control with global convergence[J]. Journal of Central South University,2019,26(3):632-639. doi: 10.1007/s11771-019-4034-6
    [15]
    MA J, LI P, ZHENG Z. Disturbance observer based dynamic surface flight control for an uncertain aircraft[J]. Proceedings of the Institution of Mechanical Engineers,2018,232(4):729-744. doi: 10.1177/0954410017691793
    [16]
    尹敬莹, 杨成禹. 机载稳定平台的神经网络PID控制[J]. 长春理工大学学报,2018,41(1):53-56.

    YIN Jingying, YANG Chenyu. Neural network PID control of airborne stability platform[J]. Journal of Changchun University of Science and Technology,2018,41(1):53-56.
    [17]
    秦川, 吴玉敬, 陶忠, 等. 载机平台光电转塔目标定位的仿真算法[J]. 应用光学,2020,41(2):257-264. doi: 10.5768/JAO202041.0201004

    QIN Chuan, WU Yujing, TAO Zhong, et. al Simulation algorithm for target positioning of photoelectric turret of aircraft platform[J]. Journal of Applied Optics,2020,41(2):257-264. doi: 10.5768/JAO202041.0201004

Catalog

    Article views (1148) PDF downloads (138) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return