YAO Ze, CHENG Hongchang, LI Tao, ZHOU Yujian, HUANG Wujun, LI Dan. Research on afterglow measurement method of image intensifier based on P31 phosphor powder[J]. Journal of Applied Optics, 2020, 41(4): 796-800. DOI: 10.5768/JAO202041.0404002
Citation: YAO Ze, CHENG Hongchang, LI Tao, ZHOU Yujian, HUANG Wujun, LI Dan. Research on afterglow measurement method of image intensifier based on P31 phosphor powder[J]. Journal of Applied Optics, 2020, 41(4): 796-800. DOI: 10.5768/JAO202041.0404002

Research on afterglow measurement method of image intensifier based on P31 phosphor powder

More Information
  • Received Date: May 08, 2019
  • Revised Date: June 17, 2019
  • Available Online: July 14, 2020
  • The fluorescent screen afterglow of low-level-light(LLL) image intensifier plays a decisive role in the application of high frame rate photon counting system. According to the test method of fluorescent screen afterglow in the GJB 7351-2011 General Specification for Super Second Generation Image Intensifier , the light pulse was used as the excitation source. In this method, the illuminance of the light source dropped slowly when the light pulse excitation source stopped, which resulted in inaccurate test results in the measurement of afterglow time of short afterglow powder (μm level) and medium afterglow powder (ms level). Aiming at this problem, under the condition of continuous illumination, a test method of fluorescent screen afterglow with the voltage pulse signal of photocathode as the excitation source was proposed. In this method, the characteristics of the photocathode ultra fast response time (generally about 1 ns) and the shorter edge time (generally it can be controlled within 10 ns) of the voltage pulse signal improved the influence of excitation source time response on the accuracy of fluorescent screen afterglow test results. Based on this method, a set of fluorescent screen afterglow measuring device of LLL image intensifier was set up, and the repeatability measurement of domestic three generations LLL image intensifier afterglow of P31 phosphor powder was carried out. The error analysis of measurement uncertainty is carried out, and the expanded uncertainty is 3.2%, which reaches the accuracy requirements of traditional photpelectronic testing instrument, and can meet the requirements of afterglow measurement of LLL image intensifier fluorescent screen. The research results provide a detection method for higher performance products.
  • [1]
    向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006: 200.

    XIANG Shiming, NI Guoqiang. The principle of photoelectronic imaging devices[M]. Beijing: National Defense Industry Press, 2006: 200.
    [2]
    白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2013: 245-251.

    BAI Yanzhu, JIN Weiqi. Principle and technology of photoelectric imaging[M]. Beijing: Beijing Institute of Technology Press, 2013: 245-251.
    [3]
    向世明. 现代光电子成像技术概论[M]. 北京: 北京理工大学出版社, 2010: 161-162.

    XIANG Shiwei. Introduction to modern optoelectric imaging technology[M]. Beijing: Institute of Technology Press, 2010: 161-162.
    [4]
    邹异松, 刘玉凤. 光电成像原理[M].北京: 北京理工大学出版社, 1997: 338-340.

    ZOU Yisong, LIU Yufeng. The principle of photoelectric imaging[M]. Beijing: Beijing Institute of Technology Press, 1997: 338-340.
    [5]
    中国人民解放军总装备部. GJB 7351-2011超二代像增强器通用规范[S]. 北京: 中国标准出版社, 2011.

    General Armament Department of Chinese People's Liberation Army. GJB 7351-2011 General specification for super second generation image intensifier assembly[S]. Beijing: China Standard Press, 2011.
    [6]
    贾欣志. 负电子亲和势光电阴极及应用[M]. 北京: 国防工业出版社, 2013: 125.

    JIA Xinzhi. Negative electron affinity photocathode and its application[M]. Beijing: National Defense Industry Press, 2013: 125.
    [7]
    延波, 杨晔, 倪小兵, 等. 阴极脉冲占空比与荧光屏电流关系研究[J]. 红外技术,2017,39(8):757-00.

    YAN Bo, YANG Ye, Ni Xiaobing, et al. Relationship between cathode pulse duty cycle and phosphor screen current[J]. Infrared Technology,2017,39(8):757-00.
    [8]
    拜晓锋, 苏俊宏, 石峰, 等. 像增强器综合测试用光源照度调变技术研究[J]. 应用光学,2009,30(5):806-809.

    BAI Xiaofeng, SU Junhong, SHI Feng, et al. Illumination-adjusting technology of light source used for image intensifier comprehensive tesitng[J]. Journal of Applied Optics,2009,30(5):806-809.
    [9]
    拜晓锋, 郭晖, 杨书宁, 等. 用于准确预测微光像增强器寿命的光灵敏度测量技术[J]. 红外技术,2018,40(12):1121-1124.

    BAI Xiaofeng, GUO Hui, YANG Shuining, et al. Integral sensitivity measurement technique for accurately predicting the lifetime of a low-light-level image intensifier[J]. Infrared Technology,2018,40(12):1121-1124.
    [10]
    郭太良. GaAs负电子亲和势光电阴极研究[J]. 物理, 1988(6):363-366.

    GUO Tailiang. Study of photo cathode of GaAs pegative pole[J]. Physics,1988(6):363-366..
    [11]
    邓广绪, 延波, 智强, 等. 微光像增强器自动门控电源技术研究[J]. 红外技术,2012,34(3):155-158.

    DENG Guangxu, YAN Bo, ZHI Qiang, et al. Study on technology of auto-gating power source in image intensifier[J]. Infrared Technology,2012,34(3):155-158.
    [12]
    YANG Ye, YAN Bo. Feedback circuit design of an auto-gating power supply for low-light-level image intensifier[J]. SPIE,2015,9795:97950B-2.
    [13]
    陆祈祯, 黄俊斌, 顾宏灿, 等. 一种耐静压分布反馈式光纤激光水听器探头设计[J]. 应用光学,2020,41(2):428-434.

    LU Qizhen, HUANG Junbin, GU Hongcan, et al. Design of resistant static pressure probe for DFB fiber laser hydrophone[J]. Journal of Applied Optics,2020,41(2):428-434.
    [14]
    费业泰. 误差理论与数据处理[M]. 北京: 机械工业出版社. 2010: 206-261.

    FEI Yetai. Error theory and processing[M]. Beijing: Machinery Industry press, 2010: 206-261.
    [15]
    吴磊, 阴万宏, 俞兵, 等. 飞秒激光脉冲宽度和脉冲波形测试技术[J]. 应用光学,2019,40(2):291-299.

    WU Lei, YIN Wanhong, YU Bin, et al. Research on femto-second laser pulse width and pulse waveform measurement technology[J]. Journal of Applied Optics,2019,40(2):291-299.
  • Related Articles

    [1]ZHANG Hanlin, ZHANG Rongzhu. Defocusing error correction method based on error extraction algorithm assisted installation and adjustment[J]. Journal of Applied Optics, 2024, 45(6): 1245-1251. DOI: 10.5768/JAO202445.0603005
    [2]LU Daju, ZHANG Dayong, ZENG Litang, ZHANG Kai, YANG Hao, ZHANG Peiyu. Guidance error correction method based on target track[J]. Journal of Applied Optics, 2023, 44(5): 1088-1094. DOI: 10.5768/JAO202344.0503005
    [3]YANG Chao, ZHOU Peng, ZHOU Runsen, GAO Xu, XUE Changxi. Research on on-line correction technology of ruled grating curved error[J]. Journal of Applied Optics, 2019, 40(4): 658-662. DOI: 10.5768/JAO201940.0403005
    [4]ZHANG Wenying, ZHU Haoran. Error analysis and correction of circular grating angle measurement system[J]. Journal of Applied Optics, 2019, 40(3): 399-403. DOI: 10.5768/JAO201940.0301007
    [5]WANG Ke-wei, MA Chao-jie, CHEN Wei, ZHANG Fan. Error analysis for gate centroid tracking algorithm of infrared imaging[J]. Journal of Applied Optics, 2009, 30(2): 353-356.
    [6]AN Ya-dong, HE Jun-hua, CANG Yu-ping, CHEN Liang-yi. Effect of penta-prism error on parallelism detection[J]. Journal of Applied Optics, 2007, 28(5): 649-653.
    [7]CHANG Shan, CAO Yiping, CHEN Yong-quan. Influence of beam turning error of pentagonal prism on wavefront measurement[J]. Journal of Applied Optics, 2006, 27(3): 186-191.
    [8]YANG Peng-li. Elimination method of adjustment error in measurement of aspheric optical elements[J]. Journal of Applied Optics, 2006, 27(supp): 58-60.
    [9]XIA Zhi-lin, XUE Yi-yu, ZHANG You-ling, LIU Wei-hua. Analysis of Error Sensitivity and Allowable Error of Optical Film, and Computer Controll in Production[J]. Journal of Applied Optics, 2004, 25(4): 51-55.
    [10]WANG Yi-zhe. Effect of Error Auto-compensation and Error of the Extremely Narrow-band Interference Filter in DWDM System[J]. Journal of Applied Optics, 2004, 25(1): 46-51.
  • Cited by

    Periodical cited type(1)

    1. 胡小丽, 张伟光, 张思琪, 张三喜, 张玉伦, 王晓华. 一种导引头性能可视化评估方法. 应用光学. 2019(06): 993-997 . 本站查看

    Other cited types(0)

Catalog

    Article views (782) PDF downloads (36) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return