Citation: | LU Daju, ZHANG Dayong, ZENG Litang, ZHANG Kai, YANG Hao, ZHANG Peiyu. Guidance error correction method based on target track[J]. Journal of Applied Optics, 2023, 44(5): 1088-1094. DOI: 10.5768/JAO202344.0503005 |
When the size of the detection target is small and is in the far distance, due to the small field of view of the photoelectric system, the effective pre-stage target guidance is the premise for the photoelectric system to track and point the target. The essence of target guidance is converting the target point under the geodetic coordinate system into the local coordinate system of the photoelectric system. Since a series of rotational and translational parameters will be introduced in this conversion process, the accuracy of these parameters will determine the ultimate target guidance accuracy. A guidance error correction method was proposed for the photoelectric system, namely acquisition-tracking-pointing (ATP) system, based on unmanned aerial vehicle (UAV) track, which used the track data around ATP system to solve optimal parameters for coordinate conversion in the process of computing target guidance data, thereby to improve the target guidance accuracy. Experimental device built for this project achieves the following results: the azimuth guidance standard variance is better than 0.052°, the elevation guidance standard variance is better than 0.04°, and the maximum error does not exceed 0.7°. The results also show that the higher the accuracy of pre-stage guidance, the faster the target acquisition speed of ATP system, which is of great significance for improving the corresponding speed of the target disposal.
[1] |
PENG Fulun, WANG Jing, WU Yilei, et al. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics,2014,35(4):557-562.
|
[2] |
SUN Hui. Target localization and error analysis of airborne electro-optical platform[J]. Chinese Journal of Optics,2013,6(6):912-918. doi: 10.3788/co.20130606.0912
|
[3] |
TAN Ligang, DAI Ming, LIU Jinghong, et al. Error analysis of target automatic positioning for airborne photo-electric measuring device[J]. Optics and Precision Engineering,2013,21(12):3133-3140. doi: 10.3788/OPE.20132112.3133
|
[4] |
ZHANG Xingguo, HAN Tao, LI Jing. Guidance and implementation of photoelectric theodolite in shipborne environment[J]. Opto-Electronic Engineering,2017,44(5):511-515.
|
[5] |
YANG Hao, YOU Anqing, PAN Wenwu, et al. Reconstruction of 3D point cloud based on vehicle-borne LiDAR and research on roaming methods[J]. Journal of Terahertz Science and Electronic Information Technology,2015,13(4):579-583.
|
[6] |
TIAN Junlin, PAN Xudong, YOU Anqing. Computation and error analysis of target guiding data on motional platform[J]. High Power Laser and Particle Beams,2014,26(8):97-101. doi: 10.11884/HPLPB201426.081018
|
[7] |
ZHANG Hongliang, YU Xianguo, WANG Zi. Error analysis and optimal maneuver trajectory design of the point target location based on a moving visual platform[J]. Journal of National University of Defense Technology,2018,40(4):87-93. doi: 10.11887/j.cn.201804014
|
[8] |
YAN Ming, DU Pei, WANG Huilin, et al. Ground multi-target positioning algorithm for airborne optoelectronic system[J]. Journal of Applied Optics,2012,33(4):717-720.
|
[9] |
WANG Manlin, XIE Yun. Target positioning solution and error analysis of airborne pod[J]. Automation & Instrumentation,2022(11):255-257. doi: 10.14016/j.cnki.1001-9227.2022.11.255
|
[10] |
WANG Jiaqi, JIN Guang, YAN Changxiang. Orientation error analysis of airborne opto-electric tracking and measuring device[J]. Optics and Precision Engineering,2005,13(2):105-116.
|
[11] |
江波, 梅超, 梁元庆, 等. 基于平面方程旋转变化方法的车载经纬仪测角误差修正[J]. 光学学报, 2015, 35(S1): s112002.
JIANG Bo, MEI Chao, LIANG Yuanqing, et al. Angle measurement error correction of vehicle-borne theodolite based on the rotation of plane equation[J]. Acta Optica Sinica, 2015, 35(S1): s112002.
|
[12] |
王芳. 光电经纬仪脱靶量和坐标动态修正[J].光学精密工程, 2009, 17(12): 2939-2945.
WANG Fang. A novel universal tracking error correction model for photoelectric theodolites[J]. Optics and Precision Engineering, 2009, 17(12): 2939-2945.
|
[13] |
闫海霞, 刘岩俊, 王东鹤. 光电经纬仪动态误差修正方法[J]. 红外与激光工程, 2014, 43(9): 3030-3035.
YAN Haixia, LIU Yanjun, WANG Donghe. Correction method of dynamic error of optoelectronic theodolite[J]. Infrared and Laser Engineering, 2014, 43(9): 3030-3035.
|
[14] |
韩光宇, 曹立华, 韩光照. 经纬仪定向误差变化的原因及解决方法[J]. 红外与激光工程, 2013, 42(3): 699-702.
HAN Guangyu, CAO Lihua, HAN Guangzhao. Cause of varying of theodolite orientation error and its solution[J]. Infrared and Laser Engineering, 2013, 42(3): 699-702.
|
[15] |
李彬, 丁亚林, 修吉宏, 等. 大倾角远距离航空成像的修正系统误差定位方法[J]. 光学精密工程, 2020, 28(6): 1265-1274.
LI Bin, DING Yalin, XIU Jihong, et al. System error corrected ground target geo-location method for long-distance aviation imaging with large inclination angle[J]. Optics and Precision Engineering, 2020, 28(6): 1265-1274.
|
[1] | YANG Ke, XUE Yuanyuan, JIA Bo, BAI Xuanqing, YU Dongyu, CHEN Chao, ZHAO Juncheng, GONG Jingzhu, YANG Bin, LI Hui, CHEN Juan. Research on synchronous trigger module of laser-induced damage threshold measurement device[J]. Journal of Applied Optics, 2023, 44(6): 1228-1235. DOI: 10.5768/JAO202344.0610009 |
[2] | YUAN Shihao, XU Junqi, SU Junhong, LU Jiaxi, REN Sen. Review of preparation methods of laser films with high damage threshold[J]. Journal of Applied Optics, 2023, 44(6): 1185-1194. DOI: 10.5768/JAO202344.0610004 |
[3] | CHEN Chao, YANG Bin, YU Dongyu, YIN Wanhong, GONG Jingzhu, LI Hui, WANG Nanxi, YANG Ke. Automatic measurement device of laser-induced damage threshold and its experiment[J]. Journal of Applied Optics, 2023, 44(4): 852-858. DOI: 10.5768/JAO202344.0403006 |
[4] | Liu hao, Pan feng, Wei Yao-wei, Ma ping, Zhang Zhe, Zhang Qing-hua, Wu Qian. Influence of defects in HfO2 film on absorptance and LIDT measurements[J]. Journal of Applied Optics, 2015, 36(2): 314-320. DOI: 10.5768/JAO201536.0207004 |
[5] | Li Peng, Hang Ling-xia, Xu Jun-qi, Li Lin-jun. Laser-induced damage resist properties of monolayer optical thin films prepared by PECVD technology[J]. Journal of Applied Optics, 2015, 36(2): 206-213. DOI: 10.5768/JAO201536.0201008 |
[6] | Yang Li-hong, Xie Hui, Su Jun-hong. Surface characteristics study of laser-induced thin film damagebased on similarity measure algorithm[J]. Journal of Applied Optics, 2014, 35(6): 1099-1103. |
[7] | GUO Fang, XU Jun-qi, SU Jun-hong, DANG Shao-kun, GOLOSOV D A. Effect of laser irradiation energy on opticalproperties and morphology of SiO2 films[J]. Journal of Applied Optics, 2014, 35(2): 348-352. |
[8] | LOU Jun, SU Jun-hong, XU Jun-qi, XIE Song-lin. Laser-induced damage threshold detection for optical thin films by scattered light of He-Ne laser[J]. Journal of Applied Optics, 2008, 29(1): 131-135. |
[9] | ZHAO Chu-jun, LI Hong-jian, CUI Hao-yang, HE Ying-xuan, PENG Jing-cui. Influence of Electric Field on Recombination Luminescence of Single Layer Organic Electroluminescent Diode[J]. Journal of Applied Optics, 2005, 26(2): 47-50. |
[10] | XIE Jian-feng, ZHANG Fu-wen. The Research on the Sensitivity Improvement of Electric Field Sensor without Electrode[J]. Journal of Applied Optics, 2004, 25(3): 60-64. |