CHAI Jinguo, YU Shancheng, ZHU Dandan, KANG Lixin, WANG Zhengtai, XU Lulu, REN Yuxuan, TONG Kai. Detection method for calibration of gas concentrations based on absorption peaks in frequency domain[J]. Journal of Applied Optics, 2024, 45(1): 142-149. DOI: 10.5768/JAO202445.0103002
Citation: CHAI Jinguo, YU Shancheng, ZHU Dandan, KANG Lixin, WANG Zhengtai, XU Lulu, REN Yuxuan, TONG Kai. Detection method for calibration of gas concentrations based on absorption peaks in frequency domain[J]. Journal of Applied Optics, 2024, 45(1): 142-149. DOI: 10.5768/JAO202445.0103002

Detection method for calibration of gas concentrations based on absorption peaks in frequency domain

More Information
  • Received Date: April 17, 2023
  • Revised Date: October 19, 2023
  • Available Online: December 13, 2023
  • The traditional optical gas detection method needs to convert the time domain signal to frequency domain signal to obtain the concentration of gas, which will introduce errors in the conversion process and cannot accurately reflect the change of frequency with time, resulting in the gas concentration cannot be accurately calibrated. A detection method based on frequency domain absorption peaks to calibrate gas concentration was proposed. Taking CO2 as an example for detection, the concentration of CO2 in the mixed gas of CO2 and N2 was determined by using the direct absorption method based on the Beer-Lambert law. This method obtained the peak intensity of the absorption spectrum by collecting the light intensity and frequency information of the laser beam and performing the Lorentz fitting by the adjacent averaging method and Levenberg-Marquardt (LM) optimization algorithm. The experimental results show that the linear relationship between laser peak intensity and gas concentration is satisfied, and the Pearson correlation coefficient can reach 0.999. Therefore, the detection method based on the frequency domain absorption peak calibration of gas concentration can effectively simplify the system structure, avoid the effect of frequency drift in the time domain to frequency domain conversion, and make the linearity between laser peak intensity and gas concentration good.

  • [1]
    袁松, 阚瑞峰, 何亚柏, 等. 基于可调谐半导体激光光谱大气CO2监测仪[J]. 中国激光,2014,41(12):176-181.

    YUAN Song, KAN Ruifeng, HE Yabai, et al. Tunable diode laser spectroscopy system for carbon dioxide monitoring[J]. Chinese Journal of Lasers,2014,41(12):176-181.
    [2]
    CHEN P, KAN L L, SONG X M, et al. Application of VMD and Mahalanobis distance combination algorithm in TDLAS methane gas detection[J]. Optik,2021,228:166114. doi: 10.1016/j.ijleo.2020.166114
    [3]
    孙利群, 邹明丽, 王旋. 可调谐半导体激光吸收光谱法在呼吸诊断中的应用[J]. 中国激光,2021,48(15):358-375.

    SUN Liqun, ZOU Mingli, WANG Xuan. Application of tunable diode laser absorption spectroscopy in breath diagnosis[J]. Chinese Journal of Lasers,2021,48(15):358-375.
    [4]
    CUI R Y, DONG L, WU H P, et al. Highly sensitive and selective CO sensor using a 233 μm diode laser and wavelength modulation spectroscopy[J]. Optics Express,2018,26(19):24318. doi: 10.1364/OE.26.024318
    [5]
    DONG M, ZHENG C T, YAO D, et al. Double-range near-infrared acetylene detection using a dual spot-ring Herriott cell (DSR-HC)[J]. Optics Express,2018,26(9):12081. doi: 10.1364/OE.26.012081
    [6]
    SHEMSHAD J, AMINOSSADATI S M, KIZIL M S. A review of developments in near infrared methane detection based on tunable diode laser[J]. Sensors and Actuators B:Chemical,2012,171/172:77-92. doi: 10.1016/j.snb.2012.06.018
    [7]
    AMANN A, COSTELLO B D E L, MIEKISCH W, et al. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva[J]. Journal of Breath Research,2014,8(3):034001. doi: 10.1088/1752-7155/8/3/034001
    [8]
    GHORBANI R, SCHMIDT F M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes[J]. Optics Express,2017,25(11):12743. doi: 10.1364/OE.25.012743
    [9]
    李峥辉, 姚顺春, 卢伟业, 等. TDLAS测量CO2的温度影响修正方法研究[J]. 光谱学与光谱分析,2018,38(7):2048-2053.

    LI Zhenghui, YAO Shunchun, LU Weiye, et al. Study on temperature correction method of CO2 measurement by TDLAS[J]. Spectroscopy and Spectral Analysis,2018,38(7):2048-2053.
    [10]
    陈玖英, 刘建国, 何亚柏, 等. 激光吸收光谱技术中扫描频率的选择[J]. 光学学报,2013,33(2):267-270.

    CHEN Jiuying, LIU Jianguo, HE Yabai, et al. Scanning frequency optimization of laser absorption spectroscopy[J]. Acta Optica Sinica,2013,33(2):267-270.
    [11]
    RAZA M, MA L H, YAO C Y, et al. MHz-rate scanned-wavelength direct absorption spectroscopy using a distributed feedback diode laser at 2.3 µm[J]. Optics & Laser Technology,2020,130:106344.
    [12]
    张锐, 赵学玒, 赵迎, 等. 激光器特性在痕量气体检测中的影响[J]. 物理学报,2014,63(14):125-131.

    ZHANG Rui, ZHAO Xuehong, ZHAO Ying, et al. Laser characteristic effect on the trace gas detection[J]. Acta Physica Sinica,2014,63(14):125-131.
    [13]
    赵海培. 激光吸收光谱自适应滤波处理算法研究[J]. 量子电子学报,2013,30(2):231-235.

    ZHAO Haipei. Investigation of adaptive filtering algorithm for laser absorption spectroscopy[J]. Chinese Journal of Quantum Electronics,2013,30(2):231-235.
    [14]
    YANG R D, ZHANG Y L. A method of low concentration methane measurement in tunable diode laser absorption spectroscopy and Levenberg-Marquardt algorithm[J]. Optik,2020,224:165657. doi: 10.1016/j.ijleo.2020.165657
    [15]
    WANG C J, SAHAY P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors (Basel, Switzerland),2009,9(10):8230-8262. doi: 10.3390/s91008230
    [16]
    ROTHMAN L S. The evolution and impact of the HITRAN molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2010,111(11):1565-1567. doi: 10.1016/j.jqsrt.2010.01.027
    [17]
    MA H L, SUN M G, ZHAN S B, et al. Compact dual-gas sensor for simultaneous measurement of atmospheric methane, and water vapor using a 3.38 μm antimonide-distributed feedback laser diode[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,226:117605. doi: 10.1016/j.saa.2019.117605
    [18]
    ZHENG K Y, ZHENG C T, HE Q X, et al. Near-infrared acetylene sensor system using off-axis integrated-cavity output spectroscopy and two measurement schemes[J]. Optics Express,2018,26(20):26205. doi: 10.1364/OE.26.026205
    [19]
    尹增谦, 武臣, 宫琬钰, 等. Voigt线型函数及其最大值的研究[J]. 物理学报,2013,62(12):212-216.

    YIN Zengqian, WU Chen, GONG Wanyu, et al. Voigt profile function and its maximum[J]. Acta Physica Sinica,2013,62(12):212-216.
    [20]
    阎杰, 翟畅, 王晓牛, 等. L-M非线性拟合的TDLAS氧气测量研究[J]. 光谱学与光谱分析,2015,35(6):1497-1500.

    YAN Jie, ZHAI Chang, WANG Xiaoniu, et al. Study of TDLAS oxygen measurement with L-M nonlinear fitting[J]. Spectroscopy and Spectral Analysis,2015,35(6):1497-1500.
    [21]
    ZHOU S, LIU N W, SHEN C Y, et al. An adaptive Kalman filtering algorithm based on back-propagation (BP) neural network applied for simultaneously detection of exhaled CO and N2O[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2019,223:117332. doi: 10.1016/j.saa.2019.117332
  • Related Articles

    [1]LI Zheng, XU Haoyu, LIANG Jingyuan, ZHANG Ying, KE Xizheng. Principle and research progress of four-quadrant detector spot detection[J]. Journal of Applied Optics, 2023, 44(5): 927-942. DOI: 10.5768/JAO202344.0509001
    [2]WANG Fubin, SUN Zhilin, WANG Shangzheng. Correlation analysis of gray scale and geometric features of femtosecond laser spot[J]. Journal of Applied Optics, 2020, 41(5): 1108-1116. DOI: 10.5768/JAO202041.0507002
    [3]CHEN Wenjian, SUN Weiping, DING Tianbao, LEI Junjie, DUAN Yuanyuan, LI Gang, HAN Yaofeng. Design of missile target angle measurement path based on laser spot time-sharing method[J]. Journal of Applied Optics, 2019, 40(6): 1004-1007. DOI: 10.5768/JAO201940.0601012
    [4]LIU Bohan, LAI Min, XIAO Shaorong. Method for detecting far-field spot uniformity of optical fiber output[J]. Journal of Applied Optics, 2019, 40(2): 356-362. DOI: 10.5768/JAO201940.0208003
    [5]Lu Hongqiang, Zhang Jingyue, Zhang Baoquan. Analysis of detection capability of shortwave infrared imaging system on laser spot[J]. Journal of Applied Optics, 2018, 39(4): 574-578. DOI: 10.5768/JAO201839.0406001
    [6]Xiao Xingwei, Ma Guolu, Zeng Guoying. Centering method for non-diffracting spot images based on correlation-coefficient[J]. Journal of Applied Optics, 2018, 39(4): 500-504. DOI: 10.5768/JAO201839.0402003
    [7]MU Rang-xiu, NING Zi-li, BI Bo-rui, HOU Feng-qian, XUE Chang-jia. Implementation of pulse peak holding circuit based on laser spot tracker[J]. Journal of Applied Optics, 2013, 34(6): 1047-1050.
    [8]CHEN Zhi-bin, LIU Yu-xiang, XUE Ming-xi, HOU Zhang-ya, LIU Bao-hua. Laser spot acquisition by lattice up-conversion board[J]. Journal of Applied Optics, 2011, 32(6): 1139-1144.
    [9]TANG Shu-gang, DANG Li-ping, BAI Bo. Morphological filter algorithm to improve positioning accuracy of multi-laser convergent spot center[J]. Journal of Applied Optics, 2008, 29(5): 693-696.
    [10]WANG Chun-yang, Li Jin-shi. Detection of laser spot drift[J]. Journal of Applied Optics, 2007, 28(2): 205-208.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (78) PDF downloads (34) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return