Citation: | LIU Wei, MAO Yifan, HUO Sijia, et al. Design of a spectroscopy-based detector for SO2 concentration in SF6 decomposition products[J]. Journal of Applied Optics, 2025, 46(x): 1-7. |
Aiming at the detection of SO2 concentration in SF6 decomposition products in electrical equipment, the design of UV absorption spectrum analysis module and data processing method were studied. Low power consumption pulsed xenon lamp light source is used to shorten preheating time. A long optical path gas absorption cell with multiple reflections is designed to effectively shorten the response time. The gas consumption is reduced, and the light source and micro spectrometer are directly coupled with the gas chamber, so that the stability is better. The SO2 concentration was inversed in the 280~320 nm spectral band. The partial least squares regression multiple correction method was used to establish a regression model for the differential absorbance of SO2 spectral band and the SO2 concentration. The errors of the model was less than 0.5 μL/L. The principle prototype is designed, and the feasibility of the design scheme is verified by experiments.
[1] |
崔方晓, 赵跃, 马凤翔, 等. FTIR被动遥测信噪比优化及在变电站SF6泄漏检测应用[J]. 光谱学与光谱分析, 2021, 41(5): 1436-1440.
CUI Fangxiao, ZHAO Yue, MA Fengxiang, et al. Optimization of FTIR passive remote sensing signal-to-noise ratio and its application in SF6 leak detection in transform substation[J]. Spectroscopy and Spectral Analysis[J]. 2021, 41(5): 1436-1440.
|
[2] |
陈秀珍, 郭伟, 高凡夫, 等. 基于气体分解产物检测技术发现的SF6电气设备放电缺陷分析[J]. 高压电器, 2019, 55(10): 87-92.
CHEN Xiuzhen, GUO Wei, GAO Fanfu, et al. Analysis of SF6 electrical equipment discharge defects found based on gas decomposition product detection technology[J]. High Voltage Apparatus, 2019, 55(10): 87-92.
|
[3] |
MAHDI A, ABDUL-MALEK Z, ARSHAD R. SF6 decomposed component analysis for partial discharge diagnosis in GIS: a review[J]. IEEE Access, 2022(10): 27270-27288.
|
[4] |
窦小晶, 叶日新, 付纪华, 等. SF6气体分解产物检测技术及其应用的研究现状[J]. 电网与清洁能源, 2019, 35(7): 24-31.
DOU Xiaojing, YE Rixin, FU Jihua, et al. Research status of SF6 gas decomposition product detection technology and its application [J] Power Grid and Clean Energy, 2019, 35(7): 24-31.
|
[5] |
DONG M, ZHANG C X, REN M, et al. Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products[J]. Sensors, 2017, 17(11): 2627.
|
[6] |
刘海波, 杨玉新, 张英, 等. 基于红外和紫外光谱的现场SF6气体综合检测技术[J]. 工业安全与环保, 2019, 45(4): 67-74. doi: 10.3969/j.issn.1001-425X.2019.04.017
LIU Haibo, YANG Yuxin, ZHANG Ying, et al. On site SF6 gas comprehensive detection technology based on infrared and ultraviolet spectroscopy[J]. Industrial Safety and Environmental Protection, 2019, 45(4): 67-74. doi: 10.3969/j.issn.1001-425X.2019.04.017
|
[7] |
CHEN Y T, ZHANG S L YAO Q. Research and development of NDIR sensor and its application in on-line detection of CF4 gas[J]. Journal of Physics: Conference Series. 2020, 1634: 012109.
|
[8] |
马凤翔, 赵跃, 王楠, 等. 基于多通光声池的SF6分解产物H2S的高灵敏度检测技术[J]. 光子学报, 2023(3): 258-267.
MA Fengxiang, ZHAO Yue, WANG Nan, et al. High-sensitivity detection technology of SF6 decomposition rroduct H2S based on multi-pass photoacoustic cell[J]. Acta Photonica Sinica, 2023(3): 258-267.
|
[9] |
李金义, 樊鸿清, 余子威, 等. 非合作目标TDLAS室内二氧化碳遥测[J]. 仪器仪表学报, 2020, 41(10): 231-238.
LI Jinyi, FAN Hongqing, YU Ziwei, et al. Indoor CO2 telemetering of non cooperative target TDLAS[J]. Journal of Instrumentation, 2020, 41(10): 229-236.
|
[10] |
徐也茗, 庞树峰, 张韫宏. 便携式红外光谱仪关于SO2高分辨检测[J]. 光谱学与光谱分析, 2020(S01): 53-54.
XU Yeming, PANG Shufeng, ZHANG Yunhong. Detection of SO2 by the compact-FTIR spectrometer[J]. Spectroscopy and Spectral Analysis, 2020(S01): 53-54.
|
[11] |
刘海波, 杨玉新, 张英, 等. 紫外差分吸收光谱法定量分析SF6分解物SO2和H2S技术[J]. 工业安全与环保, 2019, 45(3): 21-27.
LIU Haibo, YANG Yuxin, ZHANG Ying, et al. Quantitative analysis of SF6 decomposition products SO2 and H2S by UV differential absorption spectroscopy [J] Industrial Safety and Environmental Protection, 2019, 45 (3): 21-27
|
[12] |
杨宇玲, 郭新良, 崔兆仑, 等. 紫外吸收法检测SF6分解产物中的H2S[J]. 高压电技术, 2018, 44(8): 2573-2579.
YANG Yuling, GUO Xinliang, CUI Zhaolun, et al. Determination of H2S in SF6 decomposition products by ultraviolet absorption method[J]. High Voltage Technology, 2018, 44(8): 2573-2579.
|
[13] |
ZHANG Y G, WANG Y D, LIU Y J, et al. Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019, 210: 120-125.
|
[14] |
曾英杰, 支瑜亮, 范贤光, 等. 小型一体式针尖增强拉曼光谱仪设计与评价[J]. 分析化学, 2022, 50(1): 39-46.
ZENG Yingjie, ZHI Yuliang, FAN Xianguang, et al. Design and evaluation of integrated tip-enhanced raman spectrometer[J]. Chinese Journal of Analytical Chemical, 2022, 50(1): 39-46.
|
[15] |
CUI Z, ZHANG X, CHENG Z, et al. Quantitative analysis of SO2, H2S and CS2 mixed gases based on ultraviolet differential absorption spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019, 215: 187-195.
|
[16] |
ZHANG X X, ZHANG Y, TANG J, et al. Optical technology for detecting the decomposition products of SF6: a review[J]. Optical Engineering. 2018, 57(11), 110901.
|
[17] |
马勇, 肖焓艳, 丁然, 等. 基于紫外吸收光谱与最小二乘法的SO2, H2S与CS2混合气体定量检测[J]. 高压电器, 2021, 57(3): 157-165.
MA Yong, XIAO Hanyan, DING Ran, et al. Quantitative detection of SO2 H2S and CS2 gas mixture based on UV absorption spectrometry and least squares algorithm[J]. High Voltage Apparatus. 2021, 57(3): 157-165.
|
[18] |
周红, 肖松, 张晓星, 等. 基于紫外差分吸收光谱的痕量SO2气体定量检测[J]. 中国电机工程学报, 2017, 37(19): 5812-5820.
ZHOU Hong, XIAO Song, ZHANG Xiaoxing, et al. Quantitative determination of trace SO2 based on ultraviolet differential absorption spectroscopy[J]. Chinese Journal of Electrical Engineering, 2017, 37(19): 5812-5820.
|
[19] |
CUI Z L, ZHANG X X, CHEN D C, et al. Real-time measurement of SO2, H2S, and CS2 mixed gases using ultraviolet spectroscopy and a least squares algorithm[J]. Applied Spectroscopy, 2021, 75(3): 265-273.
|