Citation: | Bao Jiyu, Wang Long, Dong Xinmin. Binocular vision navigation algorithm for AAR of flying boom UAV[J]. Journal of Applied Optics, 2017, 38(6): 910-916. DOI: 10.5768/JAO201738.0602002 |
[1] |
董新民, 徐跃鉴, 陈博.自动空中加油技术研究进展与关[J].空军工程大学学报:自然科学版, 2008, 9(6): 1-5. http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb200806001
Dong Xinmin, Xu Yuejian, Chen Bo. Process and challenges in automatic aerial refueling[J]. Journal of Air Force Engineering University:Natural Science Edition, 2008, 9(6): 1-5. http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb200806001
|
[2] |
Riley D R. Automated aerial refueling(AAR)technologies and challenges[C]//AFRL-VA-WP-TP-2004-314.Wright-Patterson Air Force Base: Air Force Research Laboratory, 2004.
|
[3] |
Ren X, Wang C, Yi G. Ducted fan UAV hovering attitude control[J].Electronic and Mechanical Engineering and Information Technology(EMEIT), 2011 International Conference on IEEE, 2011, 1:421-424. http://d.old.wanfangdata.com.cn/Periodical/gjstx98201610006
|
[4] |
董晶, 傅丹, 杨夏.无人机视频运动目标实时检测及跟踪[J].应用光学, 2013, 34(2): 255-259. http://d.old.wanfangdata.com.cn/Periodical/yygx201302012
Dong Jing, Fu Dan, Yang Xia. Real-time moving object detection and tracking by using UAV videos[J]. Journal of Applied Optics, 2013, 34(2): 255-259. http://d.old.wanfangdata.com.cn/Periodical/yygx201302012
|
[5] |
Joseph P Nalepka, Jacob L H.Automated aerial refueling: extending the effectiveness of unmanned air vehicles[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. California: AIAA, 2005. https://www.mendeley.com/catalogue/automated-aerial-refueling-extending-effectiveness-uavs/
|
[6] |
陆宇平, 杨朝星, 刘洋洋.空中加油系统的建模与控制技术综述[J].航空学报, 2014, 35(9): 2375-2389. http://d.old.wanfangdata.com.cn/Periodical/hkxb201409001
Lu Yuping, Yang Zhaoxing, Liu Yangyang. A survey of modeling and control technologies for aerial refueling system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2375-2389. http://d.old.wanfangdata.com.cn/Periodical/hkxb201409001
|
[7] |
蔡鸣, 孙秀霞, 徐嵩, 等.视觉技术辅助的无人机自主着陆组合导航研究[J].应用光学, 2015, 36(3): 343-349. http://d.old.wanfangdata.com.cn/Periodical/yygx201503002
Cai Ming, Sun Xiuxia, Xu Song, et al. Vision/INS integrated navigation for UAV autonomous landing[J]. Journal of Applied Optics, 2015, 36(3): 343-349. http://d.old.wanfangdata.com.cn/Periodical/yygx201503002
|
[8] |
李波睿, 慕春棣, 吴波涛.基于视觉的自动空中加油近距相对位姿估计[J], 清华大学学报:自然科学版, 2012, 52(12): 1664-1669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201212002
Li Borui, Mu Chunli, Wu Botao. Vision based close-range relative pose estimation for autonomous aerial refueling[J]. J.Tsinghua Univ:Sci.&Tech., 2012, 52(12): 1644-1669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201212002
|
[9] |
纪超, 王庆.基于双目视觉的自主空中加油算法研究与仿真[J].系统仿真学报, 2013, 25(6): 1327-1331. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201306032
Ji Chao, Wang Qing. Stereo vision system and simulation for autonomous aerial refueling[J]. Jounal of System Simulation, 2013, 25(6): 1327-1331. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201306032
|
[10] |
解洪文, 王宏伦.基于双目视觉的自动空中加油近距导航方法[J].北京航空航天大学学报, 2011, 37(2): 206-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201102018
Jie Hongwen, Wang Honglun. Binocular vision based short range navigation method for autonomous aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 206-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201102018
|
[11] |
王威, 唐一平, 任娟莉, 等.一种改进的Harris角点提取算法[J].光学精密工程, 2008, 16(10): 1995-2000. doi: 10.3321/j.issn:1004-924X.2008.10.034
Wang Wei, Tang Yiping, Ren Juanli, et al. An improved algorithm for Harris corner detection[J]. Optics and Precision Engineering, 2008, 16(10): 1995-2000. doi: 10.3321/j.issn:1004-924X.2008.10.034
|
[12] |
Hartley R I, Zisserman A. Multiple view geometry in computer vision Second Edition[M]. Cambridge: Cambridge University Press, 2003: 314-315.
|
[13] |
徐巧玉.大型装备在线三维视觉测量系统关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10213-2008194868.htm
Xu Qiaoyu. Study of the key technologies of online 3D vision measurement system for large-scle equipments[D]. Harbin: Harbin Insitude of Technology, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10213-2008194868.htm
|
[14] |
Haralick R M, Joo H, Lee C, et al.Pose estimation from corresponding point data[J].IEEE Trans.Systems, Man, and Cybernetics, 1989, 19(6):1426-1446. doi: 10.1109/21.44063
|
[1] | TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004 |
[2] | ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001 |
[3] | WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004 |
[4] | SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002 |
[5] | LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002 |
[6] | YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001 |
[7] | CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199. |
[8] | WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364. |
[9] | GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201. |
[10] | TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55. |
1. |
赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
![]() | |
2. |
王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
![]() | |
3. |
李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
![]() | |
4. |
胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
![]() | |
5. |
何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
![]() | |
6. |
刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
![]() | |
7. |
冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
![]() | |
8. |
李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
![]() | |
9. |
王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
![]() | |
10. |
张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
![]() | |
11. |
陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
![]() | |
12. |
王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 .
![]() | |
13. |
顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
![]() | |
14. |
胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
![]() | |
15. |
王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
![]() | |
16. |
张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
![]() | |
17. |
蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 .
![]() | |
18. |
曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 .
![]() | |
19. |
王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 .
![]() | |
20. |
丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
![]() | |
21. |
张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 .
![]() |