Hou Yu. Broadband THz single-mode single-polarization hollow core fiber[J]. Journal of Applied Optics, 2017, 38(5): 844-847. DOI: 10.5768/JAO201738.0508001
Citation: Hou Yu. Broadband THz single-mode single-polarization hollow core fiber[J]. Journal of Applied Optics, 2017, 38(5): 844-847. DOI: 10.5768/JAO201738.0508001

Broadband THz single-mode single-polarization hollow core fiber

More Information
  • Received Date: March 08, 2017
  • Revised Date: June 23, 2017
  • Traditional terahertz (THz) single-mode single-polarization (SMSP) fibers are mostly designed on the basis of solid fibers, which increases the THz wave transmission loss. In recent years, there have been a few reports about THz SMSP hollow core fibers; however, the fibers have narrow bandwidth, they can only work around a single frequency, which reduces the application value and technical advantages of single-polarization devices in THz networks. In order to solve these problems, a broadband THz SMSP fiber device was proposed. The fiber can achieve SMSP transmission from 1.63 THz to 1.73 THz with a bandwidth more than 0.1 THz. It has great significance for the establishment and application of THz communication network.
  • [1]
    Okoshi T, Oyamada K. Single-polarization single-mode optical fiber with refractive-index pits on both sides of core[J]. Electronics Letters, 1980, 16(18): 712-713. doi: 10.1049/el:19800505
    [2]
    蔡春平.偏振保持光纤的模式双折射[J]。应用光学, 2004, 25(1): 39-42. doi: 10.3969/j.issn.1002-2082.2004.01.013

    Cai Chunping. Modal birefringence of polarization-maintaining fiber[J]. Journal of Applied Optics, 2004, 25(1): 39-42. doi: 10.3969/j.issn.1002-2082.2004.01.013
    [3]
    Yan F P. Design and characteristics of a near elliptic inner cladding high birefringent polarization stable photonic crystal fiber[J].Acta Physica Sinica, 2008, 57(9): 5735-5741. http://d.old.wanfangdata.com.cn/Periodical/wlxb200809061
    [4]
    Wang L, Yang D X. Highly birefringent elliptical hole rectangular lattice photonic crystal fibers with modified air holes near the core[J]. Optics Express, 2007, 15(14): 8892-8897. doi: 10.1364/OE.15.008892
    [5]
    Lee S G, Sun D L, Lee K, et al. Single-polarization single-mode photonic crystal fiber based on index-matching coupling with a single silica material[J]. Optical Fiber Technology, 2011, 17(1): 36-40. http://cn.bing.com/academic/profile?id=37970e36e6a581b0e33eecfbd85d0854&encoded=0&v=paper_preview&mkt=zh-cn
    [6]
    Fan F, Chen S, Wang X H, et al. Terahertz refractive index sensing based on photonic column array[J]. IEEE Photonics Technology Letters, 2015, 27(5): 478-481. doi: 10.1109/LPT.2014.2382128
    [7]
    杨晶, 赵佳宇, 刘伟伟, 等.超快激光成丝产生太赫兹波的研究[J].红外与激光工程, 2015, 44(1):996-1007. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201503039

    Yang Jing, Zhao Jiayu, Liu Weiwei, et al. Study of terahertz radiation from filamentation induced by ultrafast laser pulses[J]. Infrared and Laser Engineering, 2015, 44(1):996-1007. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201503039
    [8]
    钟宇光, 张祖兴, 乔学增, 等。偏振无关的波长间隔可调的全光纤双折射滤波器[J].应用光学, 2011, 32(2): 303-307. doi: 10.3969/j.issn.1002-2082.2011.02.024

    Zhong Yuguang, Zhang Zuxing, Qiao Xuezeng, et al. Polarization-independent all fiber birefringent filter with adjustable wavelength spacing[J]. Journal of Applied Optics, 2011, 32(2): 303-307. doi: 10.3969/j.issn.1002-2082.2011.02.024
    [9]
    Nielson K, Rasmussen H K, Adam A J, et al. Bendable, low-loss Topas fibers for the terahertz frequency range[J]. Optics Express, 2009, 17(10): 8592-8601. doi: 10.1364/OE.17.008592
    [10]
    White T P, Mcphedran R C, De Sterke C M. Confinement losses in micro structured optical fibers[J]. Optics Letters, 2001, 26(21): 1660-1666. doi: 10.1364/OL.26.001660
  • Related Articles

    [1]TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004
    [2]ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001
    [3]WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004
    [4]SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002
    [5]LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002
    [6]YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001
    [7]CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199.
    [8]WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364.
    [9]GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201.
    [10]TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55.
  • Cited by

    Periodical cited type(21)

    1. 赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
    2. 王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
    3. 李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
    4. 胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
    5. 何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
    6. 刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
    7. 冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
    8. 李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
    9. 王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
    10. 张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
    11. 陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
    12. 王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 . 本站查看
    13. 顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
    14. 胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
    15. 王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
    16. 张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
    17. 蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 . 本站查看
    18. 曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 . 本站查看
    19. 王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 . 本站查看
    20. 丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
    21. 张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 . 本站查看

    Other cited types(24)

Catalog

    Article views PDF downloads Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return