Liu Jun, Zhang Xibin, Gao Ming. Design of cold MWIR/LWIR infrared dualband/dualfield panoramic optical system[J]. Journal of Applied Optics, 2016, 37(3): 456-464. DOI: 10.5768/JAO201637.0306001
Citation: Liu Jun, Zhang Xibin, Gao Ming. Design of cold MWIR/LWIR infrared dualband/dualfield panoramic optical system[J]. Journal of Applied Optics, 2016, 37(3): 456-464. DOI: 10.5768/JAO201637.0306001

Design of cold MWIR/LWIR infrared dualband/dualfield panoramic optical system

More Information
  • Received Date: November 08, 2015
  • Revised Date: January 26, 2016
  • In order to identify that two bands information of the medium wavelength infrared radiation (MWIR) and the long wavelength infrared radiation(LWIR), realize the fast switch of two different fields of view(FOV), and further enhance the efficiency and range of existing systems to detect, a fourchannel cooled infrared dualband dualfield panoramic imaging optical system was designed by using the method of spatial multicamera image mosaic panoramic imaging. The panoramic system is consisted of three infrared lenses with mutual intersection angle of 120 in circularviewing direction and one infrared lens in top view direction, each optical system of imaging channel is designed to be the double imaging configuration.The Fnumber is 2, the working band is MWIR 3.5 m~4.8 m and LWIR 7.8 m~9.8 m, the full field of view(FOV) is 122 , the ratio of long focal length to short focal length is 5, and it can complete 122 /44.49 dualfield transformation through the moving of the zoom configuration in axial direction. By adopting the refractive /diffractive hybrid optical elements and introducing aspheric design technique, the system was made temperature compensation by the means of optical passive athermalization. The result indicates that the system has almost 100% efficiency of the cold stop and a good ability of narcissus restraining. At the Nyquist frequency of 18 lp/mm, the modulation transfer function (MTF) values of LWIR optical system are all greater than 0.3 , and that of MWIR are all greater than 0.5.The image plane is stable and the image quality is excellent when the system works on -40 ℃ ~ + 60 ℃.

  • [1]Fraenkel R, Haski J, Mizrahi  U,et al. Cooled and uncooled infrared detectors for   missile seekers[J]. SPIE,2014, 9070:90700PN.
    [2]Zhang Yuan. New scheme of shipborne IRSTS [J]. Infrared and Laser Engineering, 2009, 38    (4):583588.
    [3]Kriegman D, Triendl E, Binford T. Stereo vision and navigation in buildings for mobile   Robots [J]. IEEE, 1989, 5(6):792802.
    [4]McCulloch P M, Olson C. Eliminating dewar narcissus artifacts induced by    moving optics in infrared staring focal plane sensors[J]. SPIE, 2012, 8468:848606   848606N.
    [5]Deng Jian, Li Ruigang,Zheng Changsheng. Technology of image space scanning[J]. Journal of Applied Optics, 2012,33(2):284287.
    邓键,李锐钢,郑昌盛. 像方扫描技术研究[J]. 应用光学,2012,33(2):284287.
    [6]Meng Jianqi. Dual field zoom(6×) infrared imaging optical system[J]. Infrared and Laser Engineering, 2008, 37(1): 8991.
    孟剑奇. 双视场6倍变焦红外热成像光学系统[J]. 红外与激光工程, 2008, 37(1): 8991.
    [7]Wu Haiqing, Wang Haixia, Zhao Xinliang, et al. Design of dualband/dualfiled IR optical    system[J]. Infrared Technology, 2010, 32(11): 640644.
    吴海清,王海霞,赵新亮,等. 双波段/双视场红外光学系统设计[J]. 红外技术, 2010, 32(11):   640644.
    [8]Fishcher R E, Tadicgaleb B. Optical system design[M]. Washington: SPIE Press,    2000.
    [9]Zheng Yawei, Qiang Hua, Guo Yunping, et al. Design and analysis of dualchannel infrared projection optical system[J]. Journal of Applied Optics, 2012, 33(22):391394.
    郑雅卫, 强华, 郭云萍, 等. 双通道红外投影光学系统的分析和设计[J].应用光学,2012,33(22):391394.
    [10]Shen Liangji,Feng Zhuoxiang. Athermal design of refractive/diffractive hybrid infrared optical system working at 3.7 ~4.8 [J]. Journal of Applied Optics, 2009, (4):683687.
    沈良吉,冯卓祥. 3.7 ~4.8 波段折/衍射红外光学系统的无热化设计[J]. 应用光学,2009,(4):683687.
    [11]Shen Biyun, Gao Ming.Passive optical athermalization desing for infrared optical system [J].Electronic Optics and Control,2012,19(6):7178.
    申碧云,高明.红外光学系统被动式无热化设计方法[J].电光与控制,2012,19(6):7178.
    [12]Nevo Y,Nir D, Wachtel S. Use of diffractive elements to improve IR optical systems    [J].SPIE,2003, 4820:744750.
    [13]Zhang Yimo. Applied optics[M]. Beijing: Publishing House of Electronics Industry, 2008:559561.
    张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008:559561.
  • Related Articles

    [1]BAI Xinru, JIANG Shilei, GONG Xuhang, JIANG Dacheng, FENG Jiang. Design of optical system for dual-band co-aperture heatless gun objective lens[J]. Journal of Applied Optics, 2025, 46(1): 32-40. DOI: 10.5768/JAO202546.0101001
    [2]WANG Xiaobo, WANG Xi, LIU Guangkang, XIA Shuce, FU Mingliang, HAO Xinjian, CAO Qiankun. Design of athermal and lightweight optical system based on long-wave infrared detector[J]. Journal of Applied Optics, 2021, 42(3): 429-435. DOI: 10.5768/JAO202142.0301009
    [3]Huang Wen-hua, Lin Feng. Design of day and night lens with large aperture and sensor[J]. Journal of Applied Optics, 2016, 37(1): 45-51. DOI: 10.5768/JAO201637.0101008
    [4]FU Yue-gang, HUANG Yun-han, LIU Zhi-ying. Design of multispectral infrared athermal optical system[J]. Journal of Applied Optics, 2014, 35(3): 510-514.
    [5]GUO Sheng-nan, FU Yue-gang, LIU Zhi-ying, MA Chen-hao. Athermal design of two-color infrared common aperture optical system[J]. Journal of Applied Optics, 2013, 34(6): 1019-1024.
    [6]LIU Xiu-jun, ZHANG Jin-wang, ZHANG Hua-wei, LIU Bo. Athermal design of cooled MWIR optical system[J]. Journal of Applied Optics, 2013, 34(3): 391-396.
    [7]WANG Zhi-bin, ZHANG Yue-bin, WANG Zhong-dong, XIE Sha-sha, HAO Yang. Heat pipe heat sink of high power LED based onthermal resistance network[J]. Journal of Applied Optics, 2012, 33(6): 1014-1018.
    [8]LIU Jun, WU Xiao-chen. Athermalisation of infrared Cassegrain optical system in missile[J]. Journal of Applied Optics, 2012, 33(1): 175-180.
    [9]LIN Fu-tiao, LIU Zhao-hui. MWIR refractive /diffractive hybrid athermal optical system and its stray light analysis[J]. Journal of Applied Optics, 2010, 31(5): 833-837.
    [10]WANG Xue-xin, JIAO Ming-yin. Combination of optical passive and mechanical-electrical athermalisation[J]. Journal of Applied Optics, 2010, 31(3): 354-359.
  • Cited by

    Periodical cited type(8)

    1. 杜国军,王春雨,欧宗耀,王聪,胡斌. 多基准轴透射式系统装调方法. 应用光学. 2021(02): 247-254 . 本站查看
    2. 邓佳逸,常伟军,王楠茜,邱亚峰. 基于反射式平行光管法的紫外透镜焦距测试研究. 红外技术. 2021(10): 925-929 .
    3. 王东杰,柯君玉,王海超,阴刚华. 光学装调中的一种基于猫眼效应的焦距测试方法. 光学技术. 2020(04): 466-471 .
    4. 赵希婷,张超,冀翼,刘辉,焦文春,黄阳,李重阳,张志飞. 超宽视场离轴光学系统畸变一致性校正技术. 应用光学. 2020(05): 1032-1036 . 本站查看
    5. 邢辉,张占东,刘剑峰,宋俊儒,金忠瑞,刘志远. 多谱段多通道离轴三反空间相机装调. 红外. 2020(12): 1-11 .
    6. 李晓磊. 基于平行光管法的薄凸透镜焦距测量. 应用光学. 2019(05): 859-862 . 本站查看
    7. 裴昱,陈远鸣,卞晓阳,赵勇毅,赵正杰,常建华. 基于RBF神经网络气压补偿的非色散红外SF_6气体传感器. 应用光学. 2018(03): 366-372 . 本站查看
    8. 蒋正东,朱荣刚,陈磊,何勇. 基于双朗奇光栅的焦距测量技术研究. 应用光学. 2018(05): 687-690 . 本站查看

    Other cited types(1)

Catalog

    Article views (1507) PDF downloads (129) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return