BAI Xinru, JIANG Shilei, GONG Xuhang, et al. Design of optical system for dual-band co-aperture heatless gun objective lens[J]. Journal of Applied Optics, 2025, 46(1): 32-40. DOI: 10.5768/JAO202546.0101001
Citation: BAI Xinru, JIANG Shilei, GONG Xuhang, et al. Design of optical system for dual-band co-aperture heatless gun objective lens[J]. Journal of Applied Optics, 2025, 46(1): 32-40. DOI: 10.5768/JAO202546.0101001

Design of optical system for dual-band co-aperture heatless gun objective lens

More Information
  • Received Date: February 25, 2024
  • Revised Date: March 19, 2024
  • Available Online: January 23, 2025
  • To meet the requirements of integrating day and night in electro-optical sights, lightweight design, and excellent stability, a dual-band co-aperture digital aiming objective lens that was visible and near-infrared was designed, and used a CMOS camera to receive the imaging beam. The optical system was designed for the wavelength ranges of 0.4 µm~0.65 µm and 0.7 µm~0.85 µm, with a focal length of 50 mm, an F-number of 1.4, and a total length of 90 mm. The system shows no thermal difference effects in the temperature range of −40 °C to 50 °C, with distortion in each band less than 0.04%. In the visible light band, the modulation transfer function (MTF) is greater than 0.55 at 100 lp/mm, and in the near-infrared band, the MTF is greater than 0.3 at 100 lp/mm. By optimizing the aberrations caused by the sensitive surface of the system and properly distributing the optical power, the sensitivity of the system to processing tolerances, assembly difficulty, and cost were reduced. The design results show that the system uses spherical mirrors, making it simple in structure, small in size, low in cost, and with good tolerances, which can achieve good imaging quality across the entire operating temperature range, and has a certain engineering application prospect.

  • [1]
    白鹏飞, 张佳丽. 一种应用于自动步枪的红外枪瞄镜的设计与实现[J]. 光电技术应用, 2020, 35(2): 32-40.

    BAI Pengfei, ZHANG Jiali. Design and implementation of an infrared gun sight applied to automatic rifles[J]. Electro-Optic Technology Application, 2020, 35(2): 32-40.
    [2]
    王保华, 张绪国, 封宇航, 等. 可见光/红外共口径模块化光学系统设计[J]. 激光与光电子学进展, 2023, 60(1): 328-334.

    WANG Baohua, ZHANG Xuguo, FENG Yuhang, et al. Design of visible/infrared common aperture modular optical system[J]. Laser & Optoelectronics Progress, 2023, 60(1): 328-334.
    [3]
    马健, 张军强, 吴从均, 等. 全谱段高光谱成像仪光学系统设计[J]. 光学学报, 2022, 42(23): 173-181.

    MA Jian, ZHANG Junqiang, WU Congjun, et al. Optical system design of full-spectrum hyperspectral imager[J]. Acta Optica Sinica, 2022, 42(23): 173-181.
    [4]
    贾永丹, 孙建, 聂云松. 高光学效率可见红外共口径/视场离轴系统设计[J]. 航天返回与遥感, 2023, 44(1): 126-134.

    JIA Yongdan, SUN Jian, NIE Yunsong. Design of high optical efficiency visible infrared common aperture/field of view off-axis system[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(1): 126-134.
    [5]
    张勇, 马飒飒, 李志伟, 等. 低照度固体成像夜视头戴系统物镜设计[J]. 光学与光电技术, 2022, 20(6): 16-22.

    ZHANG Yong, MA Sasa, LI Zhiwei, et al. Design of objective lens for low-illumination solid imaging night vision head-mounted system[J]. Optics & Optoelectronic Technology, 2022, 20(6): 16-22.
    [6]
    常宇梅, 王劲松. 轻小型宽波段变焦物镜光学系统设计[J]. 光学学报, 2023, 43(8): 418-426.

    CHANG Yumei, WANG Jinsong. Design of optical system for light and small wide-band zoom objective[J]. Acta Optica Sinica, 2023, 43(8): 418-426.
    [7]
    栗洋洋, 杨加强, 彭晴晴, 等. 制冷型红外双波段广角无热化光学系统设计[J]. 激光与红外, 2023, 53(5): 712-715.

    LI Yangyang, YANG Jiaqiang, PENG Qingqing, et al. Design of cooled infrared dual-band wide-angle athermalized optical system[J]. Laser & Infrared, 2023, 53(5): 712-715.
    [8]
    李杰, 罗辉, 李金铖, 等. 基于谐衍射与自由曲面的机载红外双波段成像光学系统设计[J]. 光子学报, 2021, 50(12): 140-155. doi: 10.3788/gzxb20215012.1222004

    LI Jie, LUO Hui, LI Jincheng, et al. Design of airborne infrared dual-band imaging optical system based on harmonic diffraction and free-form surface[J]. Acta Photonica Sinica, 2021, 50(12): 140-155. doi: 10.3788/gzxb20215012.1222004
    [9]
    党更明, 高明, 范晨, 等. 红外双波段共焦复合孔径光学系统设计[J]. 光学学报, 2023, 43(8): 321-334.

    DANG Gengming, GAO Ming, FAN Chen, et al. Design of infrared dual-band confocal compound aperture optical system[J]. Acta Optica Sinica, 2023, 43(8): 321-334.
    [10]
    赵阳, 巩岩, 胡宜宁. 变焦距光学系统降低公差灵敏度的方法[J]. 光电工程, 2009, 36(7): 121-125.

    ZHAO Yang, GONG Yan, HU Yining. Methods for reducing tolerance sensitivity of zoom optical systems[J]. Opto-Electronic Engineering, 2009, 36(7): 121-125.
    [11]
    邓枰湖, 林峰. 光学设计中降低公差灵敏度的方法[J]. 激光与光电子学进展, 2015, 52(11): 182-189.

    DENG Pinghu, LIN Feng. Methods to reduce tolerance sensitivity in optical design[J]. Laser & Optoelectronics Progress, 2015, 52(11): 182-189.
    [12]
    JOSEPH M G. Introduction to lens design [M]. New York: Willmann-Bell, 2002.
    [13]
    ENGLISH N. The classical achromat:Choosing and using a refracting telescope[M]. New York: Springer, 2011: 21-37.
    [14]
    JIA B, ZHAO Y, YUAN X. Design of dual band common aperture continuous zoom optical system[J]. Journal of Physics: Conference Series, 2020, 1601(6): 062028. doi: 10.1088/1742-6596/1601/6/062028
    [15]
    栗孟娟, 廖志波, 王春雨. 小口径高精度折射式光学系统装调公差的分析与控制[J]. 应用光学, 2015, 36(2): 277-281. doi: 10.5768/JAO201536.0203007

    LI Mengjuan, LIAO Zhibo, WANG Chunyu. Analysis and control of assembly and adjustment tolerances of small-aperture high-precision refractive optical systems[J]. Journal of Applied Optics, 2015, 36(2): 277-281. doi: 10.5768/JAO201536.0203007
  • Cited by

    Periodical cited type(1)

    1. 张东东. 光纤光栅传感器设计及解调仪研发. 辽宁化工. 2019(03): 240-242 .

    Other cited types(2)

Catalog

    Article views (79) PDF downloads (35) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return