WANG Xiaobo, WANG Xi, LIU Guangkang, XIA Shuce, FU Mingliang, HAO Xinjian, CAO Qiankun. Design of athermal and lightweight optical system based on long-wave infrared detector[J]. Journal of Applied Optics, 2021, 42(3): 429-435. DOI: 10.5768/JAO202142.0301009
Citation: WANG Xiaobo, WANG Xi, LIU Guangkang, XIA Shuce, FU Mingliang, HAO Xinjian, CAO Qiankun. Design of athermal and lightweight optical system based on long-wave infrared detector[J]. Journal of Applied Optics, 2021, 42(3): 429-435. DOI: 10.5768/JAO202142.0301009

Design of athermal and lightweight optical system based on long-wave infrared detector

More Information
  • Received Date: November 11, 2020
  • Revised Date: December 26, 2020
  • Available Online: April 26, 2021
  • Using chalcogenide glass and binary diffraction surface, an infrared athermalization system based on the uncooled long-wave infrared detector (1 024×768 pixel) was designed. The system was composed of 3 pieces of glass, and the system had a focal length of 75 mm, an F −number of 1, a total length of 97 mm, and a total weight of 203 g. The simulation analysis using ZEMAX shows that, within a temperature range of −40℃~50℃, the modulation transfer function(MTF)value at the Nyquist frequency (42 lp/mm) of the system is greater than 0.37, which is close to the diffraction limit; between −70℃ and 70℃, the MTF at the system Nyquist frequency (42 lp/mm) under temperature can also meet the requirements. The system has the characteristics of large relative aperture, excellent full-field image quality, lightweight structure, and good manufacturability.
  • [1]
    李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2014.

    LI Xiaotong, CEN Zhaofeng. Geometrical optics, aberrations and optical design[M]. Hangzhou: Zhejiang University Press, 2014.
    [2]
    吴海清, 曾宪宇, 王朋. 微型长波红外无热化光学系统设计[J]. 红外,2019,40(3):1-5. doi: 10.3969/j.issn.1672-8785.2019.03.001

    WU Haiqing, ZENG Xianyu, WANG Peng. Design of miniature long-wave infrared optical system with optical passive athermalization[J]. Infrared,2019,40(3):1-5. doi: 10.3969/j.issn.1672-8785.2019.03.001
    [3]
    张发平, 张华卫. 基于二元衍射面的长波无热化光学系统设计[J]. 红外技术,2020,42(1):25-29. doi: 10.3724/SP.J.7100840882

    ZHANG Faping, ZHANG Huawei. Design of long-wave athermal optical system based on binary diffraction surface[J]. Infrared Technology,2020,42(1):25-29. doi: 10.3724/SP.J.7100840882
    [4]
    陈潇. 大面阵长波红外光学无热化镜头的设计[J]. 红外技术,2018,40(11):1061-1064.

    CHEN Xiao. Design of long-wavelength infrared athermalization lens for large-array detector[J]. Infrared Technology,2018,40(11):1061-1064.
    [5]
    吴海清, 田海霞, 崔莉. 大视场、大相对孔径长波红外机械无热化光学系统设计[J]. 红外,2015,36(8):1-5. doi: 10.3969/j.issn.1672-8785.2015.08.001

    WU haiqing, TIAN Haixia, CUI Li. Design of mechanically athermalized longwave infrared optical system with wide field of view and large relative aperture[J]. Infrared,2015,36(8):1-5. doi: 10.3969/j.issn.1672-8785.2015.08.001
    [6]
    李林, 黄一帆, 王涌天. 现代光学设计方法[M]. 北京: 北京理工大学出版社, 2018.

    LI Lin, HUANG Yifan, WANG Yongtian. Modern optical design method[M]. Beijing: Beijing Institute of Technology Press, 2018.
    [7]
    张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008.

    ZHANG Yimo. Applied optics[M]. Beijing: Publishing House of Electronics Industry, 2008.
    [8]
    米士隆, 牟达, 牟蒙. 紧凑型长波红外光学系统无热化设计[J]. 红外与激光工程,2015,44(10):2032-2036.

    MI Shilong, MU Da, MU Meng. Athermalization of a compact LWIR optical system[J]. Infrared and Laser Engineering,2015,44(10):2032-2036.
    [9]
    白瑜, 廖志远, 李华, 等. 硫系玻璃在现代红外热成像系统中的应用[J]. 中国光学,2014,7(3):449-455.

    BAI Yu, LIAO Zhiyuan, LI Hua, et al. Application of the chalcogenide glass in modern infrared thermal imaging systems[J]. Chinese Optics,2014,7(3):449-455.
    [10]
    张婉怡. 红外折衍混合摄远光学系统无热化设计[J]. 应用光学,2017,38(1):12-18.

    ZHANG Wanyi. Athermalization design of infrared refractive diffractive telephoto objective[J]. Journal of Applied Optics,2017,38(1):12-18.
    [11]
    史浩东, 张新, 曲贺盟, 等. 基于硫系玻璃的大相对孔径红外消热差光学系统设计[J]. 光学学报,2015,35(6):0622002-1-7.

    SHI Haodong, ZHANG Xin, QU Hemeng, et al. Design of large relative aperture infrared athermalized optical system with chalcogenide glasses[J]. Acta Optica Sinica,2015,35(6):0622002-1-7.
    [12]
    葛琳琳, 王世先, 张瑞, 等. 基于硫系玻璃的光学被动式红外无热化镜头设计[J]. 红外,2020,41(2):7-12. doi: 10.3969/j.issn.1672-8785.2020.02.002

    GE Linlin, WANG Shixian, ZHANG Rui, et al. Design of optical passive infrared non-thermal lens based on chalcogenide glass[J]. Infrared,2020,41(2):7-12. doi: 10.3969/j.issn.1672-8785.2020.02.002
    [13]
    农文捷, 金宁. 二元光学工艺参数计算[J]. 红外技术,2004,26(6):13-16. doi: 10.3969/j.issn.1001-8891.2004.06.004

    NONG Wenjie, JIN Ning. Evaluation of binary optics manufacturing parameters[J]. Infrared Technology,2004,26(6):13-16. doi: 10.3969/j.issn.1001-8891.2004.06.004
    [14]
    张以谟. 现代应用光学[M]. 北京: 电子工业出版社, 2018.

    ZHANG Yimo. Contemporary applied optics[M]. Beijing: Publishing House of Electronics Industry, 2018.
    [15]
    王鹏. 衍射光学元件设计及金刚石单点车削技术的研究[D]. 长春: 长春理工大学, 2006: 23-30.

    WANG Peng Research on design and process parameters of diamond turning of diffractive optical[D]. Changchun: Changchun University of Science and Technology Optical Engineerin, . 2006: 23-30.
  • Related Articles

    [1]XU Guoqing, WANG Reng, CHEN Xintian, QIAO Hui, YANG Xiaoyang, CHU Kaihui, WANG Dahui, YANG Pengling, LI Xiangyang. Potential application of HgCdTe detector with composition gradient in laser measurement[J]. Journal of Applied Optics, 2024, 45(3): 549-556. DOI: 10.5768/JAO202445.0310009
    [2]ZUO Xiaozhou, WANG Huilin, ZHOU Yun, XI Gangyang, ZHANG Yunlong, ZHAO Hongjun, YU Bingwei. Research on thermal optical properties and thermal control technology of primary mirror assembly[J]. Journal of Applied Optics, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005
    [3]WEI Yongjie, LI Mingkai, WANG Haoran, ZHANG Shuri. Spray angle measurement method based on grayscale image differential gradient[J]. Journal of Applied Optics, 2022, 43(5): 929-934. DOI: 10.5768/JAO202243.0503001
    [4]PENG Yuanjing, XU Mingming, CHEN Yi, HU Zhongwen, JI Hangxin, WANG Lei. Multi-objective optimization design and stability analysis of flexible support system for large rectangular collimator mirror[J]. Journal of Applied Optics, 2021, 42(2): 215-222. DOI: 10.5768/JAO202142.0201002
    [5]WEI Yongjie, GE Tingting, ZHANG Zhongqi, MA Baoqiang, CHE Jinchao. Algorithm of crack extraction based on accumulated gradient[J]. Journal of Applied Optics, 2019, 40(5): 818-822. DOI: 10.5768/JAO201940.0502005
    [6]WANG Yan, HANG Lingxia. Relationship between gradient of antireflection film and laser induced damage threshold[J]. Journal of Applied Optics, 2019, 40(1): 143-149. DOI: 10.5768/JAO201940.0107003
    [7]Yang Jianli, Qi Yuan, Yang Xiaoqiang, Zhu Lei, Teng Guoqi, Shi Daoyun. Flexible support structure design of lightweight thin reflector[J]. Journal of Applied Optics, 2017, 38(5): 815-819. DOI: 10.5768/JAO201738.0505002
    [8]WU Qiong, XIANG Yang, HOU Li-jie, TAO Xue, SUN Ming-jiao. Optical design of arthroscope based on gradient refractive index lens[J]. Journal of Applied Optics, 2012, 33(5): 944-948.
    [9]CUI Yun-xia, NIU Yan-xiong, WANG Cai-li. Numerical analysis of CW laser damage in Germanium[J]. Journal of Applied Optics, 2011, 32(2): 267-271.
    [10]ZONG Si-guang, WANG Jiang-an. Detection Based on MultiDegree andOrientation Gradient Fusion for Weak Infrared DotObjects[J]. Journal of Applied Optics, 2005, 26(5): 25-028.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (603) PDF downloads (90) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return