Citation: | Zhang Tian-yi, Ji Hang-xin, Hou Yong-hui, Hu Zhong-wen, Wang Lei. Integral field spectroscopy imaging technology[J]. Journal of Applied Optics, 2015, 36(4): 531-536. DOI: 10.5768/JAO201536.0401007 |
[1]Smith J Allington. Basic principles of integral field spectroscopy[J]. New Astronomy Reviews, 2006, 50(4/5):244-251.
[2]Weitzel LKA, Kroker H. 3D: The next generation near-infrared imaging spectrometer[J]. Astronomy & Astrophysics Supplement, 1996, 119(3):531-546. [3]Content R, Content R. New design for integral field spectroscopy with 8-m telescopes[J]. SPIE, 1997, 2871:1295-1305. [4]Dubbeldam M, Content R, Allington-Smith J R, et al. Integral field unit for the Gemini near-infrared spectrograph[J]. SPIE, 2000, 4008:1181-1192. [5]Content R, Allington-Smith J R, Robertson D J, et al. ESA NGST integral field and multiobject spectrograph slicer system[J]. SPIE, 2000, 4013:851-860. [6]Murphy T W, Soifer B T. A cryogenic integral field spectrograph for the palomar 200 inch telescope[J]. Publications of the Astronomical Society of the Pacific, 1999, 111(763): 1176-1184. [7]Tecza M, Eisenhauer F, Iserlohe C, et al. SPIFFI image slicer: high-precision optics at cryogenic temperatures[J]. SPIE, 2003, 4842: 375-383. [8]Vives S, Prieto E, Salaun Y, et al. New technological developments in integral field spectroscopy[J]. SPIE, 2008,7018: 182-188. [9]Dubbeldam C M, Robertson D J. Freeform diamond machining of complex monolithic metal optics for innovative astronomical applications[J]. SPIE, 2006, 6149:1490-1490. [10]Allington Smith J R, Content R, Dubbeldam C M, et al. New techniques for integral field spectroscopy-I. Design, construction and testing of the GNIRS IFU[J]. Mon. Not. R. Astron. Soc., 2006,371(1): 380-394. [11]Montilla I, Pécontal E, Devriendt J, et al. Integral field unit spectrograph for extremely large telescopes[J]. PASP, 2008(120): 634-643. [12]Bershady M A. 3D spectroscopic instrumentation[M]. Laser Spectroscopy, 2009:112-165. |
[1] | TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004 |
[2] | ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001 |
[3] | WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004 |
[4] | SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002 |
[5] | LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002 |
[6] | YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001 |
[7] | CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199. |
[8] | WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364. |
[9] | GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201. |
[10] | TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55. |
1. |
赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
![]() | |
2. |
王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
![]() | |
3. |
李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
![]() | |
4. |
胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
![]() | |
5. |
何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
![]() | |
6. |
刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
![]() | |
7. |
冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
![]() | |
8. |
李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
![]() | |
9. |
王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
![]() | |
10. |
张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
![]() | |
11. |
陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
![]() | |
12. |
王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 .
![]() | |
13. |
顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
![]() | |
14. |
胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
![]() | |
15. |
王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
![]() | |
16. |
张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
![]() | |
17. |
蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 .
![]() | |
18. |
曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 .
![]() | |
19. |
王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 .
![]() | |
20. |
丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
![]() | |
21. |
张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 .
![]() |